A Study on the Lombard Effect in Telepresence Robotics

Ambre Davat, GIPSA-lab / LIG, CNRS, Univ. Grenoble Alpes, Grenoble INP Gang Feng, GIPSA-lab, CNRS, Univ. Grenoble Alpes, Grenoble INP Véronique Aubergé, LIG, CNRS, Univ. Grenoble Alpes, Grenoble INP

What is a telepresence robot ?

>> a mobile robot piloted remotely to interact with other people

Beam+ (awabot)

RobAIR Social Touch

- Designed at the FabMSTIC (fablab of University Grenoble Alpes) & Domus (LIG's Living Lab)
- A tailor-made robot
- Experimentation out of the laboratory

Specific issue: connection between the pilot and the robot's environment

30/08/2019

RobAIR

Augmented telecommunication

>> better than traditional videoconferencing system

Embodied pilot => physical presence in the local environment

Augmented telecommunication

>> better than traditional videoconferencing system

BUT not perfect

(Počta & Komperda, 2016)

Unfaithful transmission of the voice

Ex: voice intensity

Risk of misunderstanding and break of social rules

30/08/2019

A Study on the Lombard Effect in Telepresence Robotics – VIHAR 2019 – Queen Mary University of London

Solution

>> binaural acoustic immersion >> calibration of the audio channel

- sound intensity heard by the pilot = sound intensity in the local space
- voice intensity of the robot = voice intensity of the pilot

proprioceptive & interproprioceptive control of voice intensity

Problematic

Does **noise** in telepresence have different effects than in face-to-face interaction?

remote space

The Lombard Effect

= automatic regulation to noise (Lombard, 1911)

- Affects **intensity**, pitch, spectral energy, speech rate, articulatory movements... (Cooke et al., 2014)
- Common to other animals (Brumm & Zollinger, 2011)
- Stronger during interactive tasks (Garnier et al. 2010)
- Hard to consciously inhibit (Pick et al. 1989)

Noise sources in Telepresence Robotics

Two cases:

- => Noise in the **local space** : both subjects can hear it.
- => Noise in the **remote space** : only the pilot can hear it.

Noise sources in Telepresence Robotics

Two cases:

- => Noise in the **local space** : both subjects can hear it.
- => Noise in the **remote space** : only the pilot can hear it.

Our Approach

An experiment to study how two interlocutors using a **telepresence robot** adapt to different noise sources

measuring the Lombard Effect of **both** subjects
 Standard case : both can hear the noise
 Problematic case : only one of them can hear the noise

• individual or system-wide regulation to noise ?

Expectations

Increase of voice intensity:

- if the subject can hear the noise
- when the other subject speaks louder
 = entrainment effect (Székely et al., 2015)

remote space

A priori variations of voice intensity

local space

Pretext task: test of the robot's interface

Subjects L

Asks a list of questions & instructions

- Ex: « What is the color of the sky? »
 - « Change the camera. »

Subjects R Answers

The sky is **blue.** »

Noise apparently incidental (B: coffee machine & C/D: drill)

A Study on the Lombard Effect in Telepresence Robotics – VIHAR 2019 – Queen Mary University of London

Data

≈ 130 questions
+ 13 instructions for each session (≈ 20 min)
14 pairs of subject
(25/28 were native French speakers)

4 recordings:

- Voice of both subjects (headworn microphones)
- Microphone of the laptop of subject R
- Monitoring signal of subject R
- Pair of microphones of the robot

Total number of extracts in each condition

	R	L
Α	1521	1322
В	182	127
С	161	139
D	163	152

- => Measures => Noise B
- => Noise C
- => Noise D

Subjects R (remote pilots)

• Augmentation of voice intensity in each noise condition

=> entrainment effect ?

Subjects R (remote pilots)

• Augmentation of voice intensity in each noise condition

Subjects L								
Α	В	С	D					
69.19	- 0.06	- 0.30	+ 2.24					
1.86	0.21	0.21	0.20					
1125	118	129	143					
$\chi^2(1) = 132.59$; $p < 2.2 e^{-16}$								

Subjects R (remote pilots)

• Augmentation of voice intensity in each noise condition

Subjects L (local interlocutors)

• Augmentation of voice intensity only in condition D

=> entrainment effect

Conclusion

Lombard effect:

- in every noisy condition
- smaller than in (Winkworth & Davis 1997) (+1 to 3 dB instead of +10 dB), but significative

Perspective

- Using different noises (duration, type, intensity)
- Check if people are able to perceive these small intensity variations
 If so, how do they understand them?

Thank you for your attention!

Living Lab Domus

R model: $max intensity \sim noise condition + (1|keyword) + (1|subject)$

	Subjects R				Subjects L			
Condition	Α	В	С	D	Α	В	С	D
Maximum intensity (dB)	64.61	+ 2.98	+ 1.19	+ 2.38	69.19	- 0.06	- 0.30	+ 2.24
Standard error (dB)	1.11	0.36	0.37	0.36	1.86	0.21	0.21	0.20
Number of extracts	1263	160	146	150	1125	118	129	143
Statistical significance	$\chi^2(1) = 98.47$; $p < 2.2 e^{-16}$				$\chi^2(1) = 132.59$; $p < 2.2 \ e^{-16}$			