[
]
Project info 1
Experiment Date20190410
Experiment ID
Notebook ID
Project
Experimenter
Protocol
[
][
][
]
BrdU
Stepbystep instructions for performing an unpaired t test
How the data are organized
The two columns define two groups. Note that, unlike many statistics programs, Prism does not define groups using a grouping variable. Instead, the groups are defined by columns.
The goals
 To determine if the differences between the two group means
is greater than you'd expect to see by chance.

To determine the 95% confidence interval for the difference
between the two means.
How to perform an unpaired t test
Click Analyze, choose t test from the list of column analyses, then choose an unpaired t test on the dialog. Click the link below for detailed instructions.
1
20
28
31
29
22
33
61
54
114
69
60
43
39
20
28
31
29
22
33
61
54
114
69
60
43
39
33
48
89
70
53
18
40
35
23
50
24
13
71
45
22
14
9
13
15
2
0
3
5
10
11
12
14
16
17
11
7
6
17
20
14
40
20
20
10
29
18
12
Hematoxilin
Stepbystep instructions for performing an unpaired t test
How the data are organized
The two columns define two groups. Note that, unlike many statistics programs, Prism does not define groups using a grouping variable. Instead, the groups are defined by columns.
The goals
 To determine if the differences between the two group means
is greater than you'd expect to see by chance.

To determine the 95% confidence interval for the difference
between the two means.
How to perform an unpaired t test
Click Analyze, choose t test from the list of column analyses, then choose an unpaired t test on the dialog. Click the link below for detailed instructions.
1
13
14
17
16
19
10
20
17
118
71
64
22
19
28
20
43
20
30
10
24
38
45
62
40
42
70
50
13
6
11
11
6
2
28
33
32
77
85
50
43
119
173
99
12
39
52
31
44
203
118
112
19
43
103
54
Data 3
HaemD3
13
14
17
16
19
10
20
17
118
71
64
22
19
28
20
43
20
30
10
24
38
45
62
40
42
70
50
13
6
11
11
6
BrdUD3
20
28
31
29
22
33
61
54
114
69
60
43
39
20
28
31
29
22
33
61
54
114
69
60
43
39
33
48
89
70
53
18
40
35
23
50
24
13
71
45
22
14
9
13
15
BrdUD10
0
3
5
10
11
12
14
16
17
11
7
6
17
20
14
40
20
20
10
29
18
12
HaemD10
28
33
32
77
85
50
43
119
173
99
12
39
52
31
44
203
118
112
19
43
103
54
eNrsXQucHEWZr+559bxnl02yYLxrQwIhbIaZfZBEFzIJIWxizK1JgCCe7GR3EgZ2Z5LZyYOg
ZoREI+TiIqAIHhd5qadwgCfmcuitET2OQ+UwgneicogaFQ/v4BR5xarq6un6enp6Z3ZmN5ml
vvw60//u6qqvv3p0Pb5/be95y5dfsGZJp1QIIIRGpBFJxv8PoPXy59BsfOVlCQFZL2u/5PKt
rQgRKBd6T0doGT5z4GMTPlzsSRcLSUIdw4JYGJn96jHp111IiBAhQoQIEdLIIgkTCBEiRIgQ
IVPiey4LMwgRIkSIECFChAgRIkSIECFChAgRIkSIECE1iQMtxf+/cBJCj56M0BoHQquc1TxP
/O0eRRJyaSvxTnTTCfqi7gJZVnAhD31hTZbk0slBmxcmrokhDo9o3gYOWZrF4tEuXJTKDSQz
ybJpn46PiG081MERrb1qaEN2ENnGc5JlPM0sHs3t8eJ0ZtMAPoZt3mumZTwyi0czybr0UGpY
XZ3arq7JDiUzJfGcio9gGX3ciQ/RWIj75oeLZzchhSs4GpIAkgFyAORk6Hp6VsDHzeiIx3hm
/NoKp1AhQoQIESLkeAv5MN+G9G7Zd9A22SByCBEyeSInFhU0dyQvwt1XdGFmczKdSw2oeTWf
Gs6r2Y3q0tzAhciHZkpw+ESJSLJBSHqr90PfSUdATegYrd+vMQsdpFa1cvhqwse7iuMDIt2o
Df/v40YMY8k56JRi7AS/iQ/+2QOopzj2QiDUmxax6U/quWa+/5uifnobphPQnCxf3fjAwxX6
Vl58LKajMD19bQDdUtSDPJWgVluX3LB1MJlTc6nhrYP5Ye65oiiGVWT6HI3NOqBcaUBHpQGd
lQZ0VRrQXWlAT6UBlUoDeksDLkfLsOZufPPqoGgUhQiZSl3NY3WUy3BbeFkFceIgox1/evGC
E/VX/+hexj5flxkfyF21HJ8pduvvQS3cx11hB7n7ebTV1CyTz3EY//aq25KDW1PqXK37dUbN
2T/95lXXf+2h75yrJYLCRtKSKem8mkvm01lUt6RbD8333TjSktASkbikZVPSa9ThLVuTuNeJ
6pT0hsdSwXThycVaIjKXtMOU9LL0xo2pXCrTn1I3pPLbU6mMOpRKZobHnXT0DzMPzn76XaNa
Ig4uaacp6VXZ7amc2p/NbEwPUAUG00PpPBp/0r6Wm7M/X3seS9rJJe0yJX3h5s31TbrnkfAN
17jjLGkXl7TblPRyVszqlvRlz8/uOtL3l6yYubmkPeUq13JWzGpNeteD1+9ffdoPWOXyhL9I
O8hOBAdFetJ8i6xLZU/IVT/hqPoJoZXQSmgltBJaCa2EVkIroZXQ6q2i1SK2CCIhLyL7t/Wk
hpL57I70YDpT4cJHXRbvzMOJhlv4kMax8OEACx/OKhc+3NyShqfswod7jIUPj6msiIUPsfAh
RIgQsfAhFj4mbOFDmsiFj+XXBp9+ty++2HrhQ5rIhY8tkbue/sr7w2UWPqSJXPh42/ObRhZ2
fLfMwoc0kQsfR++4Pnqoc1nCeuFDmsiFj9e+Fxn1HepIWC98SBO58LHmp6E3MvtWJ6wXPqSJ
XPj46/f+IrhgT6TMwoc0kQsfV/tmv/jSbQsXi4UPoZXQSmgltBJaCa2EVkIroZXQqpEWPpQi
+4MMlcpQPfh58bqueJjHEQ0yteRHMWZ3siYQYL/EInPY8V5xnNDHbDZKfq9F7pLJqjZWG9XP
eUClXIOPO+k6lybT6LVp+Nr04jWJm3zkq+l+pLKrEheKlJzTuemhAF0300XXlzyV2EVoVa2m
Kc7EFu15orV2l4+d3NWfDxe6kXV9TnF6KQhSkPgGxks1jKNI0asToU/QNB3cxChvhxE25RVO
aKlLNafePq7UP84aSmOSUmFNn1QR8e2oQztKpAK9p3pdKm0NAyxPXmDHNaLFaajW0M39kpI9
l2sNeSHtztdMf6HGfE1CpXveS8XWkFx9lLsTMK3AV9oa6rPb5CoC7Z1ssSy0ERl/P49cCJh0
PJkdXu09Iqhd0i/rjyPUt8IcLUnuWYRWSCxswZXo0a+PSKgk/BCJW95Mw59H3yJCz68mRpH2
0nMP/m+u1LKSnH8fHzscR+n1LhJ/07M95jgP4eMW5xM0zJfxcblrtHg+162dkzBH3VqYr+Dj
oOdRer6SRNKkluj5TXw8ofyIhllPepMnJYo6R1oMnXt9hs6DrpaVTWg3PitI1M1hMKUuySQH
r9qZGjgvO7h1KKMu3TYcZadLzK2vqk9ZF0+Gtw4NJXNXqera9KZMemO6P5nJD16lDrBljPxi
dW6v2q3GorGuM1T1rzKp+Wo2p+a3Z+fnk+lBHDOLaLGq5tvUgY092e3qhvQmNT2s5i9PFePp
JwHek0pm1AfUtee/h3wG+pmOZa4vVdVyaymquqhrDr/akM7kUzmshqrqKz/ajLyaz+JgQ5vx
BaxlLp3EgfHTy9uWLc+0qcs2DtRokB+KnDhBcsLosMhct6fA2ssR1gR9El3O2hB9f64Qboin
4+dOZvtLvQOP62K4gVqEmnC9nYOy6O1oH2O83IhOQffidL6Nj5/g8z/ipyKS5r50ivQ21CUF
0BLJi1ZKTehSaQ56iFbzaVytDzH9QuwDQPSdjgyXp5PZdTfVRBtjkrRjSHOyIfcWIc3Vy8ta
ljmsg5DFx9tptwFhjbXnglRrRJ26SJr34qOVxfttdk7cpX7CwpB4/8j0IHsKRCQt7hb6hgi9
jXXNu1jjTnRfImm6zCD6SFocJN5LJU03vYvqMI2s9RZf76ArqOoPhkoDFUoaaz9Np3CB/sFI
SNoHg153Fi6wc22gHxX2sSHxq3KhpxgP+/CspEVLpWEuo2F6V9jFSfppO6SRFfq5Imvn5PVj
rj56nifXHQV6HiVxhkZ77OIk6W729K7QdU4ohs6FJkNnNDvR04Q+zQoC6Xq341YpTqtNLBaf
h+WS1PC6YiuSP6crGu+M4/bjnLO7OtujsXbcHnREzz67XV19TmdXvDMaX4ivxKMLF8Twlfb2
+e0Logs78aWuaGe8a37HQhyW1Pb58QXRWEcs2r5wUZyE6GpTOzvb1HZz0j88kZWzblZuROWb
FSf7n+xs6MCFWuLGWQquHE5cgRw4Vh+axW3mcRaubkvwsRZX0yQu51u4sdh2HG43fnYffnYE
P/sQeoZVT12cJocA/W8V682K7hPq4ZoRhVV3J7s2jYX3serrY/VlFmtGQlRLLV3SfCzRmwh8
rGX3SXxJdo3c28Kasmn0LbR4SJOxm6U/gzVVTpbmCNPBblwpY21J09iby16R6s/jD87GrBpX
B9Pa2BJ/iobz+DsxXGaAeRdntkY3U62NRfkB5gruEAO5E/dArLSuKDPdxg8w+WmzrfSQLK+Z
B5jFuepdMjfA1J80BpRQfkXTv5zpqaE0QFcAdCVAgwANAZQBKAvQZoC2AJQDaBigPEBbAdoG
0HaAdgB0FUA7AboaoA8C9CGAPgzQLoAKAH0EoGsAuhag3QDtAeijAH0MoL0AfRyg6wC6HqB9
AP0NQPsB+gRAIwDdANAnAboRoJsAuhmgTwH0aYBuAegzAN0K0G0AfRagvwXodoD+DqADAH0O
oDsAuhOguwC6G6B7APo8QF8A6IsA/T1AXwLoywDdC9B9AP0DQPcD9ABADwL0FYD+EaCvAvQQ
QF8D6CBA/wTQIYD+GaCHAfo6QN8A6F8AGgXomwAdBuhbAD0C0LcB+g5A/wrQowD9G0CPAfTv
AD0O0HcB+h5A3wfoCYD+A6AnAfoBQEcA+iFATwH0NEA/Aug/AfovgH4M0DMA/QSgnwL0M4Ce
Bei/AXoOoJ8D9DxAvwDolwD9CqCjAP0aoN8A9FuAXgDodwD9D0AvAvR7gP4XoP8D6CWAXgbo
/wH6A0B/BOgVgP4E0KsAvQbQ6wC9AdCbAB1jCE5Y633T0glrFzdhvVJfqafzD05umUxfSkpx
505u/sG8sbuX9v3PY2MLm5UyPZGlrANmjBD1KB9Cq7iVAN2RQGK/QTaSm8mGFQ428+9hSkWZ
kuQ138nS0CdYXGO8oGL7gkSji8i0WwVv52OpWb1dxLQa6RtjPOeoiBsK1jYreB+zjab+2qDw
lJhanhJzT3hPCbetp4THdNdTbIjdpvrsGMNXAdXVU8JTc+r19pRwlm0Bq/WOQMI7QnhHNGwL
6Od+y3lHzKCDohlopdRqe01v2xRL7wilTt4R3rLeEeZ0nWy1x2vhHaEI7wjhHSG8I0ROTIZ3
hCK8I05I7wivyeFO/2AoFt4RFX4wtO9qbIWVd0TBZXhHIIfhHVHw2HtHROlQYrTH/LGh3hFu
wztilPOO6KvAO+IWzjtiLvOOoIuWrt6ip0TC3Vdc8ExUsOBZYAueJPyBiKHz6CxD58KpxDvi
ZrbYwPXAqR8CdQXoKHVC6Iguao8RJ4Su9o5YdFEctwmd0Y4FHerqczraF8SjHcQtAT+9oJ06
IXTGop1x7UpHPL4oigPi+n52HCcQi7a3LyRuCx0x4n3QpnZoiXbqvhEnrGrWTcoNNp4Rfva/
hAuyA1cyY1RLxlNaM+NAM3GVOo3zjOjAVe18fFyMrw3gaprjxl478LU9GF+Pn9tv6RnhZ9XH
z3lGBLgmJcyNViOcZ67e7HiZ9vqS/0xuyf80bsm/g1vyP59b8r+YhSHVfoCFbWaLkfqS/w5u
yX8Puz6DLak5WHOxvwLPCBfWlrzHsmQ+qXaUmUTjWUyNboxam4PqJ9HeJ4ZtDUs34neofxlf
PF+SLa8hm0k0V8kkmoOrD+OZRPNx02T9TBNjEi3M3e0Cd2VWp/S73eCug9UyM1VJu+vk9C8d
uvpMLYWrqgkycrcnmRqav6yjwmkyT/Fz4Sz2hsJcb2h8OhBfwvHo4CjqEKlJB29Rh3isQiUU
CyWaasoMbzEzxqGEs8zHprkSZiuJUuHWa97qs5Un0UFKzr3PtzPYHdbzcr3cjtokCRvZyeag
ZPxhdFHPUURdSTq5mXTyzB5Fb4hM08Kj1yT0BorcawF/AG069+fMyLU3uBWANyz/nJl+540y
f87M7v4N9F34HcGmFa/occ9A3WVZwL9fzE4SOo4gxaM9KbEY5NIYEtfe3ZuAl9YljB7m/U7N
vlqj7cRWstLhEhjD6IaSGBw0BjfOFQXdXeRaRWxYzfUMdW8hgCqhs9vJF4op2Ull8fqqipeE
vjcB30GqOC2pqrQqj9dfVbx+i3eQK05LriqtyuMNVBVvwPQO0hQoS9IUKEvSFChL8hQoS/IU
KEtyw5alOYWdlr2Bnz18646LOtcsJlEoHuOtNfvHqNM4fMb4lbl0oQa8K712vr3Y2T2dlaPd
Dm1wpeHdjt0OieI9qMXqNbCmH2WpfIz97kXa3thz2NtJ5fsd9O3eZ/N2sxOl+SGXlMSx385a
e6LJWNrLDa292aFiXaKJygO0tNzvtCtZnYnS+iyVKc3Va080sdYeFbV32vZY73dWZ3ujRz2R
tje0dzW09m5kPToYraDkrChb7utQcqgmY2nvqavtJ6fWGtorDap9ayHAeYsQmVWcatb7HqfS
aXBfSZ/kHcZYkNvCSy38Bb2/zfW6d1sIRW51qb41oWfC2uzCkjBxA/9xcfxPvs5aPBHEJmPo
17oF7QBTlGbZzd7A+juvp2b1pJrQNPSi593t/t3evrDiucjf5+0O/959rn+Hd11YwrkDNZxb
GAGTrhId42vgCvveIx33B3DL4rQN5sUWk9F6uU0awJGSL7qLK1Q+/M9V8swZxTg/SxeHw7wV
ZGOmS5+hkyziMIkLFDqnTYfIVeaai5u187KC4ispPgjNTcSK6seLZ7VkOrLp7BmZfrlvNKgE
+8L7fM8Hnw90h/O+x4OvB8pnusT+wUz/5Wu2Ziw8/NLZONMlLtMPHLirePCZ7pjwTJeqz3RH
BWOJxsl0Gd3lWeddHej1PerZ4Z0XaPM96xnxNgdasHoxCWb6LGSminKtUzGVFk77s6h+e49p
b7YXh9pCY+xk988sNBd7A06No0WljYank/DsDyfobX6oOBMY5eZd3ehK/P+ZiYqspVpbi/r8
4je3t9Y9yn3h5f5bIo8pT4Zn+fOR55TfhH3+90fqZ60vIM1ahABoZS2tyrmBtUjvZv26dH4w
ZbZXoGZ7OW3sRd7d3l4+1+zAq67bg1FXT+Ap187gcldf4BuuDcFa7UUaBM1eq1jpWl+mdMll
7HUJs9cpVAdHib3cNI2JsJoWs53VvhEKBD4Yfjj4XCgWWB++JfhqqCeQCBew1dodtVhtn0+3
2iFWyg6VKWUOajUPsBrphV4SH9NsJJGJMds+n53ZFNytag1r3arusNat6g5r3Srz90vrtnlB
403QPFZxSs1aa5eLaGKv/YO4U3ibuy/8FO4UbsfhSTeN/MpVau+os/a6JtbatyYKdFVxr/QR
uuQ5b+lgsv9KNZkZUC++PJ1P4U+xvgHHNUh1G99Cq+gqmW/ke8Kkw1AoFNCRI0dQX18fxeT3
6NGjxc5Eo4SZiiLyR4gQIdXICwWdq/w7lHAY4yrSPzkmzCNESFXyOxRxQl+BY1Pw6yzCiDAi
TOVhjG+rzH1bhaVEGBFmPLXIIWqRCCPC1FiLnGKcJ0TIOMd5ei1yiVokREiNtcgtapEQITXW
Io+oRUKEjEteSBQS1xa9wwwi951FLrY2o39XcVsBwyVEcz/2grv6hkT6XYKbGSlcqmgvX8AN
r1wmz4kSHU9uuFTCDXdQmzongBuubbClccN1zxzC6PZw55Abzoey4n57xrhvxw2XmUbVccN1
LpiLOTD5kN+CG/5Q6gMJaJMNHNaYG24aQwAFUahKbrgeg4dt2hFBTRyf207qGUpwwytNS3DD
y4vghgtuuOCGly9Lght+/Lnh3pLewMRww0t7k1bccLeJG+6pkRvuK9/vqCu72u7txs+u9je0
9iaX9xoZvmNQw6rRviKGb9C2x1o/dnU9bW9oH2po7cN1LTmy/beu7iUnUlfbT06tNbRvalDt
W4tf5LciN/zSoMYN3xXUuOGbgnbccJny76rkhhfOf/LdFtxw4jPAS0Nyw6UaZriOHzd8lV/j
hm/2a9zw9X47briD0ger5IbTyZ4pyg1vvEw/EbjhTpoRfsBD9cN5akERNxvN1VAU8SPO2YFH
XLcHX3H2BA64dgYjrr7A3rpSxKezQjarTCFzNyhF/D5GEb+OUcRzk0oR97yVKeLe40IR38Uo
4nfWSBEPCIq4oCCfGCLyR4gQIdWIoIgLEVI/ERRxEUaEEWEERVyEEWEERVyEEWEERVyIkKk2
zhMUcSFC6lWLBEVciJBaa5GgiAsRMj6ZTIq4jMOSurosmU+qHRbscCLEq2RC2eG1uFGi48kO
lxk7vE1qR5+iLq5+FHASE4/FDl9Rlh2eSxgm4Nnh5Mp01E7N6WMGJcymMMtech7hzpu4MAfQ
XnbHyUyo33nTghXOx/gm+yv3/P3IGPebTPGb799AnRWdXMFwsPNp4I6LdceI3SphoUcSBtZY
Z15quWacay3jZKH7GCt+On5+fCx0P42hFZ2MThEsdMFCpyJY6Me/LAkWumCh16ssCRb68Weh
N5f0BjQW+obFhRpZ6ICtVuzdoGLvRmMdzkcGC/2w5ONY6Ielw1IYsNIPSxEOL3cdlppsWOqR
CljqJ5XtlxTqyfO2ffvx87xbGlr7aci6D1hnlnpZ7RGqhWs83bZHWzeed/XaV8Q1ntHQ2rfW
teSUZalPUMk5ua62r77W1mb7UxpUe42lTpBOLKoXS50wkW4PxpoIE2lnMNA0mSx1PTWrJw3C
8mfclwaDSl/46+5dwV97usN3uzcFJaU8YZkwTX0lhOWvVsBSVyr8C+Zt0qcQISwflhqCpS7X
MNN2vFjqlyrO4Pe9feFdytzgl7zd4U1KJPgtm60JCFM2XJLpL71ha0b6Z+uVClnqE53p42Sp
m+fZkGmE1UiZ/nZfMnSDvy+8xLcnNOTvDp/hGwrt8ZfPdEL3jZRkevx1+5pO/mw9mas1Mp04
J+kHn+nOCc90ufpMd5bJdLlBM/1n/lX+tcG+sCOw2X9WsDv8W/96/wXB8plO2MpNJZmefdW+
ppNpXwVXGCPTiTeafvCZ7prwTHdUn+muMpnuaMhMl9ErnnXel/29vpnKDu8T/jZfpzLiPeif
zP0oFFp8msnrMGmj/af+1OCgujmXHUxvTOWS+XR20relODjGNgtPKVc0zfSva35V2d/0ii/W
3Oy9p+lZX2tz/WzXL2u265etNwzwUtt5ge1IKVuXHkrNHUhedUb9d6YoV9xInOT17U12xPmw
7xGXO/yK81nfAddzoYjrFd9e12OhyduZwkdN1gJMRmy0NDdwobo5O5zOp7elVFL4hudM1D4V
qMH3qfA34j4VP3e1hsn4ykN3hSAjnvHtU9Fc550edE3sta/XPhXTJnWfCr3IOkOhyDOhWU1z
Q+2Rg6E3I4nQysiB0C/pcLjWllIrkgFaJPE/rlqTOM8zt4ARrgVU2LX6tH7klezN8AFlY2DU
uyF4jXJd4LPec4O3KncEdntPC9bPDEFqBAeSOTOQajhv3rz59HtpzLGFJuAjgJD2StZmELuW
iF0xyorIHyFChFQjYtcSIULqJ2LXEhFGhBFhxK4lIowII3YtEWFEGLFriRAhU22cJ3YtESKk
XrVI7FoiREittUjsWiJEyPhkcnYtWVjQrnmpb21vLntFqj+vpjMbs2rcYvcS3fWC94b/9R37
l1a5m0kdRZFK/jwmr+AEi+aioydleAufmRiiTkoyawSpFE69OPbiESlD7X/+js2pXHoolcmr
y5L5FMpSZlRs0VmxzrPaY/FFKEPdebhgK5bhQDTPM9THZ3U2n9qQzV4JbihGLhoXgyCiVM64
49WC57P92UHjKv1h6Do021g8Iiy6xd99/PFzrWxhFNGFCUchgaBH9XhESvwZAAD//wMAXobe
RA==