
APPENDIX 1 - PROOF OF STREAMING VARIATIONAL OBJECTIVES
We will outline the derivations of streaming variational objectives starting from the traditional Bayesian
updating framework and the streaming Bayesian updating.

Streaming Variational Objective with Traditional Bayesian Updating
Let us first rewrite conventional Bayesian updating in terms of likelihood, prior and marginal probability
of data.

p(z|cb . . .c1) = p(cb|z)p(z|cb−1 . . .c1)/p(cb) (1)

Consider the KL-divergence between an appropriate family of distribution qθ (.) and posterior
p(z|cb . . .c1) estimated using Bayesian updating. Recall that qθ (.) is parameterized by θ .

DKL[qθ (z)||p(z|cb . . .c1)] =
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(z|cb . . .c1)
dz

=
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(cb|z)p(z|cb−1 . . .c1)
dz+ ln p(cb), from eq. 1

=−L(θ ; cb . . .c1)+ ln p(cb)

We will derive the streaming variational objective with traditional Bayesian updating by considering
the variational lower bound L(θ ; cb . . .c1) separately while assuming p(z|cb−1 . . .c1)' qθb−1(z).

L(θ ; cb . . .c1) =−
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(cb|z)qθb−1(z)
dz

=
∫ +∞

−∞

qθ (z) ln p(cb|z)dz−
∫ +∞

−∞

qθ (z) ln
qθ (z)

qθb−1(z)
dz

= E[ln p(cb|z)]−DKL[qθ (z)||qθb−1(z)],

Streaming Variational Objective with Proposed Bayesian Updating
Let us first rewrite the proposed Bayesian updating with the scaling function Sb to scale the likelihood
of batch cb instead of simply using the number of batches. Since Sb ∈R+, we substitute the product of
likelihoods term with a likelihood raised to the power of Sb.

p(z|< c1 . . .cb >)' p(cb|z)Sb p(z)∗/p(< c1 . . .cb >) (2)

Analogous to the previous proof, consider the KL-divergence between an appropriate family of
distribution qθ (.) and posterior p(< z|cb . . .c1 >) estimated using Bayesian updating.

DKL[qθ (z)||p(z|< cb . . .c1 >)] =
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(z|< cb . . .c1 >)
dz

=
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(cb|z)Sb p(z)∗
dz+ ln p(< cb . . .c1 >), eq.2

=−L(θ ;cb,Sb)+ ln p(< cb . . .c1 >)

Let us consider the variational lower bound L(θ ;cb,Sb) of the proposed Bayesian updating.

L(θ ;cb,Sb) =−
∫ +∞

−∞

qθ (z) ln
qθ (z)

p(cb|z)Sb p(z)∗
dz

= Sb

∫ +∞

−∞

qθ (z) ln p(cb|z)dz−
∫ +∞

−∞

qθ (z) ln
qθ (z)
p(z)∗

dz

= Sb×E[ln p(cb|z)]−DKL[qθ (z)||p(z)∗]
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We have derived the proposed streaming variational objective from considering the KL-divergence
between an suitable family of distribution q(.) and the proposed posterior p(z|< c1 . . .cb >).

APPENDIX 2- BLACK-BOX INFERENCE OF VI, SVI AND PVI
To conduct a fair evaluation, this section derives black-box inference for VI, SVI (Hoffman et al., 2013)
and PVI (McInerney et al., 2015) objectives following same approach employed by SSVB and BB-SVB.

A variational gradient estimator (VGE) can be constructed by differentiating the ELBO w.r.t. to
the variational parameters θ (Hoffman et al., 2013; Ranganath et al., 2014; Kingma and Welling, 2013;
Paisley et al., 2012) as shown below.

∇θL(θ ;x) = ∇θ E[log p(x|z)]−∇θ DKL[qθ (z)||p(z)] (3)

The VGE in equation 3 uses the full dataset to evaluate the gradient in a single iteration. The usual
approach to construct a stochastic variational gradient estimator (SVGE) for randomly sampled mini-
batches from a dataset with N data-points requires scaling the likelihood term by N

M (Hoffman et al.,
2013; Kucukelbir et al., 2017). Thus, the likelihood is scaled to as it is computed using the full dataset
suppressing the overwhelming priors or in this instance the overwhelming KL divergence term. We obtain
SVGE for mini-batches randomly sampled from the full dataset as follows.

∇θL(θ ;x)' ∇θL(θ ; cb,N,M) =
N
M

∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||p(z)] (4)

Algorithm 1: Black-Box Variational Inference - VI
Inputs : x, p(z)
Initialize : θ

repeat
g← ∇θL(θ ;x) (VGE Eq. 3)
θ ← Update parameters using gradients g

until θ converges;
return θ

Algorithm 2: Black-Box Stochastic Variational Inference - SVI
Inputs : c1 . . .cb, p(z), N, M
Initialize : θ

foreach ci ∈ c1 . . .cb do
for t ∈ 1 : T do

g← ∇θL(θ ; ci,N,M) (SVGE Eq. 4)
θ ← Update parameters using gradients g)

end
end
return θ

We can optimize the VGE and SVGE following reparameterization VI to construct the black-box
inference for VI and SVI. Accordingly, algorithms 1 and 2 respectively present the black-box VI and
black-box SVI. Furthermore, we derive black-box PVI by replacing N with an additional hyperparameter
α to control the posterior variance as proposed by McInerney et al. (2015).

Recall that the KL divergence term serves as the regularization to the posteriors, thus altering α also
adjusts the regularization to the posteriors in addition to controlling the posterior variance. Therefore,
estimating the optimal α also resembles finding the ideal regularization to posteriors.

Accordingly, we have obtained black-box counterparts of VI, SVI and PVI following their original
objectives in this section. We will be using them throughout our experiments in contrast with SSVB and
BB-SVB.
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APPENDIX 3 - SVB WITH BLACK-BOX INFERENCE
This section demonstrates the deficiencies in extending the SVB (Broderick et al., 2013) to the black-box
VI techniques. As seen in the literature, the black-box inference techniques are mostly motivated by the
ability to perform gradient descent updates on the variational objective (Kucukelbir et al., 2017; Ranganath
et al., 2014; Kingma and Welling, 2013; Zhang et al., 2018). Therefore, we use black-box VI presented in
algorithm 1 as the offline approximation primitive of SVB. We analyze the estimated posteriors using
SVB against the posterior approximated by SVI (algorithm 2) for a simple logistic regression task. We
perform single-pass updates on each data points from 1e3 generated data-points with five regressors.
Figure A1 illustrates the approximated posteriors for the five regression coefficients (d = 1 : 5) after each
two hundred data points.

Figure A1. Convergence of posteriors estimated using traditional SVB with black-box inference
primitives and SVI

The posteriors estimated using SVB are either failing to converge to the true coefficients or suffering
from a high variance when using BB-VI as the approximation inference primitive. This is mainly due to
the properties of the steepest descent; for each mini-batch, it initiates the stochastic search from a new
random point, which results in a much slower and poor convergence for SVB framework. Since SVB is
not extendable as an efficient black-box inference alternative, we do not consider SVB in our analysis.
Accordingly, we consider PVI and SVI as the existing state-of-the-art to perform black-box inference
with data streams.

APPENDIX 4 - MULTINOMIAL LOGISTIC REGRESSION

Let us consider bth mini-batch with M data-points x = {xi}M
i=1 where each sample xi is D-dimensional.

The targets y = {yi}M
i=1 consist K-dimensional vectors representing probability of each class given the

respective xi. Then likelihood presented in equation 5 describes the data generated i.i.d., where h(.)
denotes the Softmax function.

p(y|x,w) =
M

∏
i=1
Cat(yi|h(xi.w)) (5)

The inference process is expected to approximate the posterior of the coefficient matrix w that is
parameterized by µ and σ2. Therefore, the prior p(w jk) and posterior q(w jk) corresponding to the jth

predictor and the kth class can be defined as follows.

p(w jk) =N (µ̄ jk, σ̄
2
jk) q(w jk) =N (µ jk,σ

2
jk) (6)
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This concludes the probabilistic model for multinomial logistic regression. By considering the above
probabilistic model, we write the relevant objectives for SSVB and BB-SVB, and the existing state-
of-the-art, PVI and SVI. We have illustrated one such objective below which is derived to implement
SSVB.

L(µ,σ2;y,x,Sb) = Sb×
M

∑
i−1

E[log p(yi|h(xi.w)]−
D

∑
j=1

K

∑
k=1

DKL[qµ,σ2(w jk)||p(µ̄,σ̄2)(w jk)] (7)

Here the parameters to p(w jk), µ̄ jk and σ̄2
jk are respectively the expectation of the posterior estimated

with b−1th batch and the initial uncertainty assigned to the posteriors.

APPENDIX 5 - CLASSIFICATION FINAL F1 SCORES

20News MNIST Otto Products
SSVB 0.8236+−0.0014 0.8932+−0.0014 0.8226+−0.0034
BB-SVB 0.8235+−0.0027 0.8874+−0.0148 0.8226+−0.0034
PVI 0.7749+−0.0110 0.8906+−0.0066 0.8222+−0.0007
SVI 0.7123+−0.0148 0.8845+−0.0097 0.8041+−0.0049
AROW - 0.8970+−0.0014 0.8004+−0.0018
PA 0.7965+−0.0237 0.8792+−0.0084 0.8241+−0.0325
SGD 0.7659+−0.0278 0.8722+−0.0082 0.8268+−0.0197

Table A1. Final F1 scores using with-hold set for multi-class classification

Table A1 presents the f1 scores computed using the with-hold set for each multiclass classification dataset.
These values are computed once the model is updated using all the data-points in the training set during
the experiment 1 phase 1.

APPENDIX 6 - LINEAR MIXED-EFFECTS MODEL
Consider a mini-batch having M observations y = {yi}M

i=1 corresponding to D-dimensional fixed-effect
predictors X = {Xi}M

i=1 collected sequentially from C subjects that is described by the random effects
vector u. Assuming that the fixed effect predictors and the observations follow a linear relationship we
can denote the ith observation yi as follows.

yi = Xiβ +Ziu+ εi (8)

In equation 8 the observations yi are described as a combination of the fixed effects β with random
effects u. Fixed effect β is a D dimensional vector that consists of regression coefficient for the D
predictors Xi, whereas random effect u is C dimensional vector corresponding to the random effects for
C subjects. Random effects design vector Zi is typically a one-hot encoded vector indicating the source
of the observation yi out of C subjects to assign the corresponding random effect from u. Error term εi
represents the noise in the each observation yi.

The likelihood of the observations y can be express as the conditional probability shown in 9 which is
assumed to be corrupted by i.i.d. Gaussian noise with unknown variance σ2.

p(y|x,β ,b) =
M

∏
i=1
N (yi|Xiβ +Ziu,σ2) (9)

In our implementations of LME, we consider both β and u as random variables, thus coefficients
of fixed effect predators and random effects are respectively given Gaussian and Multivariate Gaussian
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priors as illustrated in equation 10. The respective posteriors are approximated to the same distributions
as their priors.

p(βd) =N (µd ,σ
2
d ) p(u) =NC(µ,Σ) (10)

We can derive the online inference objective similar to equation 7. Figure A2 illustrates the inference
network implemented for LME model.

Figure A2. Forward Propagation of the Inference Network Implemented for LME Model
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