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In this supplementary material, we provide details of our proposed method Compression-
Complexity Causality (CCC), which are not covered in the main paper. We explain how compression-
complexity is computed for individual and a pair of time series as well as the way dictionary
construction is done for estimating conditional CCC for multi-variate measurements. We also de-
scribe the criteria and rationale for choosing the parameters of CCC and details of our MATLAB
implementation that is made available for free download and use.

1 Individual and Joint Compression Complexities

In this section, we define how individual and joint compression-complexities are computed using
the Effort-To-Compress (ETC) measure [1].

1.1 ETC measure for a time series: ETC(X)

Since ETC expects a symbolic sequence as its input (of length > 1), the given time series should
be binned appropriately to generate such a sequence. Once such a symbolic sequence is available,
ETC proceeds by parsing the entire sequence (from left to right) to find that pair of symbols
in the sequence which has the highest frequency of occurrence. This pair is replaced with a
new symbol to create a new symbolic sequence (of shorter length). This procedure is repeated
iteratively and terminates only when we end up with a constant sequence (whose entropy is zero
since it consists of only one symbol). Since the length of the output sequence at every iteration
decreases, the algorithm will surely halt. The number of iterations needed to convert the input
sequence to a constant sequence is defined as the value of ETC complexity. For example, the input
sequence ‘12121112’ gets transformed as follows: 12121112 7→ 33113 7→ 4113 7→ 513 7→ 63 7→ 7.
Thus, ETC(12121112) = 5. ETC achieves its minimum value (0) for a constant sequence and
maximum value (m − 1) for a m length sequence with distinct symbols. Thus, we normalize the
ETC complexity value by dividing by m − 1. Thus normalized ETC(12121112) = 5

7
. Note that

normalized ETC values are always between 0 and 1 with low values indicating low complexity and
high values indicating high complexity.

1.2 Joint ETC measure for a pair of time series: ETC(X, Y )

We perform a straightforward extension of the above mentioned procedure (ETC(X)) for comput-
ing the joint ETC measure ETC(X,Y ) for a pair of input time series X and Y of the same length.
At every iteration, the algorithm scans (from left to right) simultaneously X and Y sequences and
replaces the most frequent jointly occurring pair with a new symbol for both the pairs. To illustrate
it by an example, consider, X = 121212 and Y = abacac. The pair (X,Y ) gets transformed as
follows: (121212, abacac) 7→ (1233, abdd) 7→ (433, edd) 7→ (53, fd) 7→ (6, g). Thus, ETC(X,Y ) = 4
and normalized value is 4

5
. It can be noted that ETC(X,Y ) ≤ ETC(X) + ETC(Y ).

2 Dictionary building for conditional CCC

To estimate causality from time series Y to X, amidst the presence of other variables (say Z and
W ), two time varying dictionaries are built — D that encodes information from all variables (X,
Y , Z, W ) and D′ that encodes information from all variables except Y (X, Z, W only). Suppose
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the time series blocks being considered at a time t are Xpast, Ypast, Zpast and Wpast, then the
dictionary at that time Dpast is built as follows. Suppose (for example)









Xpast

Ypast

Zpast

Wpast









blocks of length 4 time points take values









0 0 1 0
1 0 1 0
1 1 1 1
0 1 1 1









,

after each time series block (such as Xpast) is binned using 2 bins. Then encoding in Dpast is done
based on assigning a particular value to each column. As each row in the first column can take
2 values, there exists a total of 16 possible combinations that the 4 rows can take together in a
column. We encode information in 4 rows to a single row by assigning combinations of different
values in the 4 rows an encoding from ‘0’ to ‘15’. In the dictionary Dpast, the above sequences are
encoded as a single sequence —

(

6 3 15 3
)

.

The second dictionary D′

past at the same time constructed using all variables except Y similarly
encodes blocks





Xpast

Zpast

Wpast





taking values




0 0 1 0
1 1 1 1
0 1 1 1





as
(

2 3 7 3
)

assigning each column one particular state out of 8 possible states. Thus, for the above example,
D = (6, 3, 15, 3) and D′ = (2, 3, 7, 3). ETC can now be applied on the two dictionaries D and D′

as these sequences are now just 1-dimensional symbolic sequences.

3 Parameter selection for CCC: Criteria and Rationale

In Table 1, we summarize the criteria and rationale for choosing the four parameters (w, δ,B, L) of
the proposed measure CCC. We have described the measure of Compression-Complexity Causality
in the main paper with the idea of intervention. Appropriate parameter selection criteria is done
with the view to find out the correct intervention point for a time series to check its causal influence
on another given time series . Put more specifically, the main task is choosing the correct value
for the length of the time series block Ypast and accordingly for Xpast.

The parameter w which is the length of the moving window ∆X is fixed to 15 for all the
datasets used in this work. It is chosen such that it contains sufficient number of data points over
which CC rate can be reliably estimated. Earlier studies have revealed that ETC is able to reliably
capture complexity of even very short time series (as small as length of 10 samples) [2]. δ, the
step size by which the ∆X as well as Xpast window is moved, is chosen based on the criteria of
sufficient overlap (20−50%) between successive Xpast windows of length L. B, the number of bins
used to generate the symbolic sequence of the input time series is chosen such that it is sufficient
to capture the underlying dynamics. It was found that for the AR processes, B ≥ 2 is sufficient
whereas the time series from the chaotic tent map requires at least B = 8.

Once w, δ,B are chosen, we choose L, the window length of Xpast. For this, we analyze the
curves of ETC measure as they vary with L, for different time series blocks as appropriate for a
given dataset. A detailed description of selection criteria for L is discussed below.
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Table 1: Criteria and rationale for choosing the parameters (w, δ,B, L) for CCC. Values of each
parameter chosen for Autoregressive (AR), Tent Map (TM), Squid Giant Axon System (SA) and
Predator Prey Ecosystem (PP) are enlisted in the rightmost column. Please refer to the main
paper for details of these four systems.

Param-
eter

Descrip-
tion

Criteria Rationale
Values
Chosen

w

Window
length
∆X

Minimal data length over
which CC rate can be

reliably estimated.

Earlier studies have
revealed that ETC is able

to reliably capture
complexity of even very

short time series [2].

AR: 15
TM: 15
SA: 15
PP: 15

δ Step-size

An overlap of 20− 50%
between successive time
series windows (Xpast of

length L) over which CC is
estimated.

To capture the continuity of
time series dynamics.

AR: 80
TM: 80
SA: 50
PP: 4*

B
Number
of bins

Smallest number of symbols
that capture the time series

dynamics.

CCC requires symbolic
sequences that represent the

underlying dynamics.

AR: 2
TM: 8
SA: 2
PP: 8

L

Window
length of
immedi-
ate past
to ∆X

(Xpast)
and

(Ypast)

After choosing w, δ,B as
above, to check causal

influence from Ypast to ∆X,
we plot ETC(Xpast +∆X)
and ETC(Ypast +∆X) vs.

L.
First criteria : Choose a

value of L at which the two
curves are well separated.
If the above criteria fails
(there is an overlap in the
ETC curves for all L), we
plot ETC(Xpast, Ypast) and
ETC(Xpast +∆X,Ypast +

∆X) vs. L.
Second criteria : Choose a
value of L such that the two
curves are well separated.

Well separation of the
complexity values of time

series blocks (Xpast +∆X)
and (Ypast +∆X) is taken
to give maximum possible
opportunity to Ypast to
influence ∆X as against

Xpast. This L is hence the
best intervention point. If
no such value of L can be

found, the maximum
separation of curves
(Xpast, Ypast) and

(Xpast +∆X,Ypast +∆X),
gives the maximum

opportunity to
(Xpast, Ypast) jointly to

affect ∆X.

AR: 150
TM: 100
SA: 75
PP: 40

*This was an exception with 90% overlap as very short data length was available.

3.1 Selection Criteria for L

As discussed in Table 1, for given time series X and Y , we first plot ETC(Xpast + ∆X) and
ETC(Ypast +∆X) vs. L when causality is to be checked from Ypast to ∆X. We choose a value of
L at which the two curves are well separated. In this work, we start with an L = 20(> w) and go
up to L = 300 (in case of the predator prey ecosystem data, only 62 data points were available and
thus we go up to L = 40). In Figs. 1, 2, 3 and 4 which show these curves plotted for linearly and
non-linearly coupled tent maps, predator prey and squid giant axon systems respectively, there
exists some range of values of L for which the two curves are well separated. A value of L can
thus be chosen from within this range. The choice of L for these curves is based on averaged ETC

values for referred blocks over the entire time series. However, the choice of L may vary with
time if we expect to have causality at different temporal scales with varying time. Moreover, for
all the cases taken we have chosen the same values of L for checking causality from Ypast to ∆X

and for checking causality from Xpast to ∆Y . These values can however be different depending on
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Figure 1: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X) curves in the left
subfigure and ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) curves in the right subfigure for linearly
coupled tent maps (ǫ = 0.2) with Y causing X (simulated as per Eq. 17, 18 of the main manuscript).
w = 15, δ = 100, B = 8 and L is incremented by a value of 5 data points each time. Using the first
criteria for selection of L, L = 100 to 300.
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Figure 2: (color online). Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in the left subfigure
and ETC(Ypast +∆Y ), ETC(Xpast +∆Y ) curves in the right subfigure for non linearly coupled
tent maps (ǫ = 0.2) with Y causing X (simulated as per Eq. 17, 19 of the main manuscript).
w = 15, δ = 100, B = 8 and L is incremented by a value of 5 data points each time. Using the first
criteria for selection of L, L = 75 to 300.

the curves of ETC(Xpast +∆X), ETC(Ypast +∆X) and ETC(Ypast +∆Y ), ETC(Xpast +∆Y )
respectively.

The separation between the curves ETC(Xpast +∆X) and ETC(Ypast +∆X) is taken to give
Ypast the maximum opportunity to cause ∆X. The complexities of these time series blocks will
be very different at the scale at which there is an influence from past block of Y to the present
block of X. Thus the choice of L is about adaptive determination of the temporal scale at which
causality exists from Y to X.

If the above criteria fails (there is an overlap in the curves), it means that at no temporal scale
can Y intervene to make visible its dynamical influence on ∆X (by change of complexity) as against
the dynamical influence due to past of X. We then plot ETC(Xpast, Ypast) and ETC(Xpast +
∆X,Ypast+∆X) vs. L. We choose a value of L such that the two curves are well separated. In case
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Figure 3: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X) curves in the left
subfigure and ETC(Ypast+∆Y ), ETC(Xpast+∆Y ) curves in the right subfigure for predator prey
ecosystem with Y representing Didinium (predator) population and X representing Paramecium
(prey) population. w = 15, δ = 1, B = 8 and L is incremented by a value of 5 data points each
time. Using the first criteria for selection of L, L = 20 to 40.
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Figure 4: (color online). Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in the left subfigure
and ETC(Ypast+∆Y ), ETC(Xpast+∆Y ) curves in the right subfigure for squid giant axon system
(‘a5t01’) with Y representing the applied stimulus current and X representing observed voltage.
w = 15, δ = 100, B = 2 and L is incremented by a value of 5 data points each time. Using the
first criteria for selection of L, L = 75 to 300. Lower values of L are not used despite sufficient
separation so as to avoid making computation based on the transient stage values.

of AR processes where the first criteria is not met due to the overlap between ETC(Xpast +∆X)
and ETC(Ypast + ∆X), the second pair of curves is plotted as shown in Figs. 5. The rationale
behind this criteria is to see at which intervention point L do Xpast, Ypast jointly begin to have an
influence on the dynamical evolution of ∆X.

If the two time series are independent or are constant in time and identical, both the above
criteria are bound to fail. This implies that there exists no temporal scale at which there is an
influence from one of these time series to the other. For the case of two independent and uniformly
distributed real time series the curves for both criteria are shown in Figs. 7 and 8. There exists no
value of L at which there is a causality from Y to X or vice versa.
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Figure 5: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast +∆X,Ypast +∆X) curves for coupled AR processes with Y causing X (simulated as
per Eq. 15 with all settings as in Section 5.1.1 of the main manuscript with ǫ = 0.8). w = 15, δ =
100, B = 2 and L is incremented by a value of 5 data points each time.Using the second criteria
for selection of L, L = 100 to 300.
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Figure 6: (color online). Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast +∆Y,Xpast +∆Y ) curves for coupled AR processes with Y causing X (simulated as
per Eq. 15 with all settings as in Section 5.1.1 of the main manuscript with ǫ = 0.8). w = 15, δ =
100, B = 2 and L is incremented by a value of 5 data points each time. Using the first criteria for
selection of L, L = 100 to 300.

4 Description of CCC Toolbox

The accompanying CCC toolbox, implemented in MATLAB contains the following files:

1. demo_2processes.m calls functions to simulate a system of two coupled AR processes or
tent maps to estimate the value of Compression-Complexity Causality between them.

2. demo_3processes.m calls functions to simulate a system with three AR processes with cou-
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Figure 7: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast+∆X,Ypast+∆X) curves for independent processes Y and X. w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time.
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Figure 8: (color online). Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast+∆Y,Xpast+∆Y ) curves for independent processes Y and X. w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time. Using the second criteria for selection
of L, based on this figure and Fig. 7, L = 100 to 300, avoiding the range of L giving transient
values of CCC.

pling between them and estimates the value of conditional Compression-Complexity Causality
between any two variables chosen.

3. coupled_AR.m simulates a system of two unidirectionally coupled AR processes with a
desired level of noise or percentage of non-uniform sampling.

4. puncture.m introduces non-uniform sampling/non-synchronous measurements in the data.

5. coupled_tent.m simulates a system of two unidirectionally non-linearly coupled tent maps.

6. UpdateTent.m updates the values of the tent map at every iteration.

7



7. coupled_AR_3processes.m simulates a system of three coupled AR processes.

8. conditional_CCC.m estimates conditional Compression-Complexity Causality between
any two input variables (time series) from a given multivariate system.

9. ETC.m estimates individual/joint ETC values. Dn_to_D1.m subroutine called by the ETC
function performs the task of dictionary building.

10. Partition.m bins the given time series before estimating ETC values.
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