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Table S1: The nematode collagens identified in this work from species in the genus 3 
Caenorhabditis. 4 

Species # of collagen genes 
C. angaria 127 
C. brenneri 209 
C. briggsae 173 
C. elegans 181 
C. japonica 197 
C. remanei 145 
C. sinica 163 
C. tropicalis 155 

 5 

 6 

Article S1. The MIPhy model of gene family evolution 7 
Here we present the MIPhy reconciliation and clustering algorithm. It proceeds in two phases, 8 
the first inferring the gene events and using them to generate an initial clustering, and the 9 
second phase incorporating traditional data clustering techniques to refine the clusters. The 10 
model of gene family evolution is derived from the core reconciliation methods of NOTUNG, 11 
with key modifications. That algorithm only allows incongruence (in the form of incomplete 12 
lineage sorting) at polytomies. Incongruence may appear due to errors in sequencing/gene-13 
finding, incompletely resolved branches in tree-building software, horizontal gene transfer 14 
(HGT), or it may be due to selective pressures acting on one or more species. As such we freely 15 
include these events in our reconciliation. Moreover, we assume that incongruence is more 16 
likely than a duplication event followed by several independent loss events, so the latter case is 17 
not considered as possible history. As an example, node n6 in Fig. S1 is an incongruence event 18 
because genes a1 and b1 are closer to gene d1 than to c1, whereas the species tree suggests 19 
that a1 and b1 should be closer to gene c1 than to d1. If we did not allow incongruence events, 20 
n6 would instead be classified as a duplication, and the reconciliation would require three 21 
additional loss events.  22 

 23 



 24 

Figure S1: Example species and gene trees. In the gene tree the gene events are indicated with 25 
filled squares, open circles, open triangles, and Xs, representing duplication, speciation, 26 
incongruence, and loss events, respectively. Nodes a1 and a2 in the gene tree represent two 27 
distinct genes from species A, b1 and b2 are genes from species B, and so on. 28 

It should be noted that this, and many other parsimony algorithms, define a duplication to be 29 
the presence of at least one gene from the same species in both children of some tree node. 30 
This is not sufficient to rigorously prove that a duplication has taken place in some ancestral 31 
species, but this definition has been found to perform well in practice. Another difference 32 
compared to NOTUNG is that MIPhy does not attempt to model HGT explicitly. Instead, these 33 
events will be classified as incongruence or duplications, which both contribute to the 34 
phylogenetic instability cost function. This also allows the algorithm to classify these gene 35 
events using purely local information in a single pass through 𝑇𝑇𝐺𝐺, decreasing the time 36 
complexity by orders of magnitude.  37 

 38 

Terms and definitions 39 
Given a gene tree 𝑇𝑇𝐺𝐺, let 𝑔𝑔 represent some node, where 𝑙𝑙 and 𝑟𝑟 are its children. If 𝑔𝑔 is a 40 
terminal leaf, its originating species 𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔) is defined to be the species in the species tree 𝑇𝑇𝑆𝑆 41 
from which the sequence 𝑔𝑔 was collected. If 𝑔𝑔 is an internal node, 𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔) is defined to be the 42 
most recent common ancestor in 𝑇𝑇𝑆𝑆 of 𝑜𝑜𝑜𝑜𝑜𝑜(𝑙𝑙) and 𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟). The lineage of a node 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) is the 43 
set of species nodes (including ancestral species) tracing 𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔) back to the root of 𝑇𝑇𝑆𝑆. The set 44 
of all terminal leaves in the subtree of 𝑇𝑇𝐺𝐺 rooted by 𝑔𝑔 is given by 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔). The species 45 
represented in the subtree of 𝑇𝑇𝐺𝐺 rooted at 𝑔𝑔, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔), is the set obtained by applying 𝑜𝑜𝑜𝑜𝑜𝑜(𝑐𝑐) to 46 
every leaf 𝑐𝑐 in 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔); 𝑆𝑆𝐺𝐺 is the set of species in 𝑇𝑇𝑆𝑆 with at least one gene in 𝑇𝑇𝐺𝐺. The 47 
represented species of a node 𝑔𝑔 not present in the represented species of a node ℎ is given by 48 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔, ℎ) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) − 𝑠𝑠𝑠𝑠𝑠𝑠(ℎ).  49 

One of three mutually exclusive gene events must take place at each internal node in 𝑇𝑇𝐺𝐺: 50 
duplication, speciation, or incongruence. These are quantified by the binary variables 𝐸𝐸𝐷𝐷(𝑔𝑔), 51 
𝐸𝐸𝑆𝑆(𝑔𝑔), and 𝐸𝐸𝐼𝐼(𝑔𝑔), respectively, constrained such that 𝐸𝐸𝐷𝐷(𝑔𝑔) + 𝐸𝐸𝑆𝑆(𝑔𝑔) + 𝐸𝐸𝐼𝐼(𝑔𝑔) = 1.  52 

 53 



Event inference 54 
If 𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐺𝐺 are given by the species and gene trees in Fig. S1, the gene events taking place at 55 
every internal node are inferred as follows: 56 

• 𝐸𝐸𝐷𝐷(𝑔𝑔) = 1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙) ∩ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) ≠ ∅: Node 𝑔𝑔 is a duplication event if its children share any 57 
represented species. As an example, 𝐸𝐸𝐷𝐷(𝑛𝑛7) = 1 because 𝑠𝑠𝑠𝑠𝑠𝑠(n6) = {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} and 58 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛5) = {𝐴𝐴,𝐵𝐵,𝐶𝐶}, so 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛6) ∩ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛5) = {A, B, C}. 59 

• 𝐸𝐸𝑆𝑆(𝑔𝑔) = 1 𝑖𝑖𝑖𝑖 𝐸𝐸𝐷𝐷(𝑔𝑔) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜(𝑙𝑙) ∉ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) ∧ 𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) ∉ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙): Node 𝑔𝑔 is a speciation 60 
event if it is not a duplication event, and the originating species of neither child is contained 61 
in the lineage of the other. As an example, 𝐸𝐸𝑆𝑆(𝑛𝑛4) = 1 because 𝐸𝐸𝐷𝐷(𝑛𝑛4) = 0, 𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛1) ∉62 
𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑1) (𝑟𝑟1 ∉ {𝐷𝐷, 𝑟𝑟3}), and 𝑜𝑜𝑜𝑜𝑜𝑜(𝑑𝑑1) ∉ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛1) (𝐷𝐷 ∉ {𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3}. 63 

• 𝐸𝐸𝐼𝐼(𝑔𝑔) = 1 𝑖𝑖𝑖𝑖 𝐸𝐸𝑆𝑆(𝑔𝑔) + 𝐸𝐸𝐼𝐼(𝑔𝑔) = 0: More explicitly, node 𝑔𝑔 is an incongruence event if it is 64 
not a duplication event, and the originating species of one child is contained in the lineage 65 
of the other. As an example, 𝐸𝐸𝐼𝐼(𝑛𝑛6) = 1 because 𝐸𝐸𝐷𝐷(𝑛𝑛6) = 0 and 𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛4) ∈ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐1) 66 
(𝑟𝑟3 ∈ {𝐶𝐶, 𝑟𝑟2, 𝑟𝑟3}).  67 

Minimum instability groups (MIGs) are defined by the most recent common ancestor in 𝑇𝑇𝐺𝐺 of 68 
the leaves in that group, and the numbers of duplication and incongruence events counted in 69 
the MIG defined by node 𝑔𝑔 are found by the recursive equations: 70 

𝐷𝐷(𝑔𝑔) = 𝐸𝐸𝐷𝐷(𝑔𝑔) + 𝐷𝐷(𝑙𝑙) + 𝐷𝐷(𝑟𝑟), (1) 71 

and 72 
𝐼𝐼(𝑔𝑔) = 𝐸𝐸𝐼𝐼(𝑔𝑔) + 𝐼𝐼(𝑙𝑙) + 𝐼𝐼(𝑟𝑟). (2) 73 

A speciation event indicates that genes from one species (or ancestral species) will be found 74 
exclusively in the descendants of one child and not the other. Conversely, for both children of a 75 
duplication event node there should be one gene from every species that has not yet been 76 
excluded by a previous speciation or incongruence event. Loss events are therefore counted at 77 
duplication nodes, as the number of represented species of each child not present in the other: 78 

𝐿𝐿′(𝑔𝑔) = 𝐸𝐸𝐷𝐷(𝑔𝑔) ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) + 𝐿𝐿′(𝑙𝑙) + 𝐿𝐿′(𝑟𝑟), 79 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) = |𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙, 𝑟𝑟)| + |𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑙𝑙)|. 80 

This would only be accurate if every species is represented by at least one gene in the total 81 
species of each MIG. To complete this concept, we introduce a new quantity 𝑀𝑀(𝑔𝑔) that 82 
compares the represented species under 𝑔𝑔 with the total represented species 𝑆𝑆𝐺𝐺. Thus, the 83 
total loss events counted in the descendants of some node 𝑔𝑔 would be given by: 84 

𝐿𝐿(𝑔𝑔) = 𝐿𝐿′(𝑔𝑔) + 𝑀𝑀(𝑔𝑔), (3) 85 

where 𝑀𝑀(𝑔𝑔) = |𝑆𝑆𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔)|. 86 

If 𝑇𝑇𝐺𝐺 is from Fig. S1, 𝐿𝐿(𝑛𝑛5) = 𝐿𝐿′(𝑛𝑛5) + 𝑀𝑀(𝑛𝑛5) = 0 + 1 = 1 because no genes from species D 87 
are present in 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛5), while 𝐿𝐿(𝑛𝑛7) = 𝐿𝐿′(𝑛𝑛7) + 𝑀𝑀(𝑛𝑛7) = 1 + 0 = 1. As demonstrated 88 



here, the 𝑀𝑀 term does not propagate up the tree, and tends to disappear as the algorithm 89 
progresses further from the leaves. 90 

The above equations are somewhat naïve, as they do not allow for loss in ancestral species. If 91 
𝑇𝑇𝑆𝑆 is given by Fig. S1 and we consider the MIG rooted by node n3, the above equations would 92 
calculate that two loss events have occurred, once each for species A and B. However, a more 93 
parsimonious explanation is that the ancestral homolog was only lost once, in species r1, the 94 
ancestor of A and B. We therefore redefine the constituents of equation (3) to account for 95 
these processes: 96 

𝐿𝐿′(𝑔𝑔) = 𝐸𝐸𝐷𝐷(𝑔𝑔) ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) + 𝐿𝐿′(𝑙𝑙) + 𝐿𝐿′(𝑟𝑟), 97 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) = max
𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙)

|{𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑡𝑡)|𝑡𝑡 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑙𝑙)}| + max
𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟)

|{𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑡𝑡)|𝑡𝑡 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙, 𝑟𝑟)}|, 98 

and 𝑀𝑀(𝑔𝑔) = max
𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔)

�{𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑡𝑡)|𝑡𝑡 ∈ {SG − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔)}�|. 99 

An example from Fig. S1: 100 

𝑀𝑀(𝑛𝑛3) = max(|{𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶,𝐴𝐴), 𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶,𝐵𝐵)}|, |{𝑜𝑜𝑜𝑜𝑜𝑜(𝐷𝐷,𝐴𝐴), 𝑜𝑜𝑜𝑜𝑜𝑜(𝐷𝐷,𝐵𝐵)}|) 101 

𝑀𝑀(𝑛𝑛3) = max(|{𝑟𝑟2}|, |{𝑟𝑟3}|) = max(1,1) = 1 102 

∴ 𝐿𝐿(𝑛𝑛3) = 𝐿𝐿′(𝑛𝑛3) + 𝑀𝑀(𝑛𝑛3) = 0 + 1 = 1 103 

 104 

Initial clustering 105 
This ‘Initial clustering’ section is also described in the main text, but is reproduced here for ease 106 
of reading. For a node 𝑔𝑔, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) is a set of sets describing the most parsimonious clustering 107 
pattern for those sequences in 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔), where each inner set describes one MIG. These groups 108 
are built iteratively by comparing 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔), the score if the existing clustering patterns 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙) 109 
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) are kept intact, with 𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔), the score if all descendants are combined into a 110 
single MIG; the minimum of these two values is stored as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔). After the initial clustering 111 
phase, the overall clustering pattern is described by 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟); every sequence from 𝑇𝑇𝐺𝐺 is 112 
contained exactly once in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). Worked examples of these variables can be found in 113 
Table S2. 114 

The weighted sum of equations (1), (2), and (3) constitutes the score function: 115 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) = 𝜃𝜃𝐷𝐷 ⋅ 𝐷𝐷(𝑔𝑔) + 𝜃𝜃𝐼𝐼 ⋅ 𝐼𝐼(𝑔𝑔) + 𝜃𝜃𝐿𝐿 ⋅ 𝐿𝐿(𝑔𝑔) + 𝜃𝜃𝑃𝑃 ⋅ 𝑃𝑃(𝑔𝑔), (4) 116 

where the 𝜃𝜃 values are the strictly positive weights applied to each event, and 𝑃𝑃(𝑔𝑔) is a the 117 
“relative spread” metric defined by equation (5) in the next section; for this initial phase of the 118 
algorithm it is set to 0. Each node 𝑔𝑔 in 𝑇𝑇𝐺𝐺 is visited in a post-order depth-first traversal. The 119 
algorithm is described by the following pseudocode: 120 

If 𝑔𝑔 is a terminal node: 121 



𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) = 𝑀𝑀(𝑔𝑔)  122 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) = {{𝑔𝑔}}  123 

Otherwise:  124 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔)  125 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑙𝑙) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)  126 

If 𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔) ≤ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔), all descendants of 𝑔𝑔 are merged into one MIG:  127 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔)  128 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) = {𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔)}  129 

Otherwise the existing cluster patterns of nodes 𝑙𝑙 and 𝑟𝑟 are kept intact: 130 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔)  131 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙) ∪𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)  132 

 133 

Transforming phylogenetic distances to coordinate points with multi-dimensional scaling 134 
The second phase of the MIPhy algorithm evaluates and refines the clusters generated by in the 135 
initial phase. Several metrics exist to measure the spread between points in a cluster compared 136 
to the rest of the data. However, many require that these points be embedded into a 137 
coordinate system, such as Euclidian space, having properties such as the concept of a mean. A 138 
phylogenetic tree does not possess these properties, so we use multi-dimensional scaling to 139 
transform the nodes of the tree into a set of coordinate points that respect the phylogenetic 140 
distances between each sequence.  141 

First, the full pairwise distance matrix from 𝑇𝑇𝐺𝐺 is generated as the matrix 𝐷𝐷, such that 𝐷𝐷𝑖𝑖𝑖𝑖 is the 142 
phylogenetic distance (measured as the sum of the branch lengths) between the leaves 𝑖𝑖 and 𝑗𝑗. 143 
The Gram matrix 𝑀𝑀 can then be generated by:  144 

𝑀𝑀𝑖𝑖𝑖𝑖 =
𝐷𝐷i12 + 𝐷𝐷1𝑗𝑗2 − 𝐷𝐷𝑖𝑖𝑖𝑖2

2
 145 

where ‘sequence 1’ is an arbitrary choice held constant throughout the calculation of the matrix 146 
(this sequence will be located at the origin of the coordinate system). The coordinate points can 147 
then be found by eigenvalue decomposition. If 𝑀𝑀 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇 is solved, the 𝑖𝑖th row of the matrix 148 
𝑋𝑋 = 𝑈𝑈√𝑆𝑆 contains the coordinates for the point representing leaf 𝑖𝑖 from 𝑇𝑇𝐺𝐺. 149 

 150 

Cluster refinement 151 
These coordinate points are used in the “relative spread” calculation: 152 



𝑃𝑃(𝑔𝑔) =
𝜎𝜎(𝑔𝑔)
𝜎𝜎�

− 1, (5) 153 

where 𝜎𝜎(𝑔𝑔) is the standard deviation of the points representing the sequences in the MIG 154 
rooted by 𝑔𝑔, and 𝜎𝜎� is the median standard deviation of all MIGs (excluding singleton clusters). 155 
The spread quantity is normalized around 0, so 𝑃𝑃(𝑔𝑔) = 1.0 indicates that the spread of MIG 𝑔𝑔 156 
is 100% larger than the median spread, while 𝑃𝑃(ℎ) = −0.3 indicates that the spread of MIG ℎ is 157 
30% smaller than 𝜎𝜎�. Though MIPhy currently measures spread using a simple standard 158 
deviation, clustering-specific methods like the Davies-Bouldin index or silhouette could be 159 
easily substituted. As in the initial clustering phase, each node 𝑔𝑔 in 𝑇𝑇𝐺𝐺 is again visited in turn. 160 
The clustering procedure is repeated, this time including the relative spread term in the full 161 
score function in equation (4). 162 

 163 

Table S2: Worked MIPhy example. This table provides the variables used in the Event inference 164 
and Initial clustering phases of the MIPhy algorithm applied to Fig. S1. Only one set of terminal 165 
leaves is included for brevity. The 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) value for each node isn’t explicitly stated, but is 166 
indicated by the bolded score value in either 𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔) or 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔). The values 𝜃𝜃𝐷𝐷, 𝜃𝜃𝐼𝐼, and 𝜃𝜃𝐿𝐿, 167 
indicate the weight of one duplication, incongruence, or loss event, respectively. The final 168 
clustering pattern is found at the root, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛8), and here the algorithm predicts three 169 
clusters. Interestingly, the clustering pattern for this tree is invariant for all parameter weights 170 
such that 𝜃𝜃𝐼𝐼 < 3𝜃𝜃𝐿𝐿. This is because in the entire table, the 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛6) to 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛6) comparison is 171 
the only one that is not invariant; as an example, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛5) < 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛5) (𝜃𝜃𝐿𝐿 < 4𝜃𝜃𝐿𝐿) is true for all 172 
strictly positive weights – which is true of these parameter weights by definition – as is 173 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛7) > 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛7) (𝜃𝜃𝐷𝐷 + 𝜃𝜃𝐼𝐼 + 𝜃𝜃𝐿𝐿 > 𝜃𝜃𝐼𝐼 + 𝜃𝜃𝐿𝐿).  174 



 Event inference values Initial clustering values 

𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) Event 𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) 

a1 A {𝐴𝐴, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3} {𝑎𝑎1} {𝐴𝐴} - - 𝟑𝟑𝜽𝜽𝑳𝑳 �{𝑎𝑎1}� 

b1 B {𝐵𝐵, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3} {𝑏𝑏1} {𝐵𝐵} - - 𝟑𝟑𝜽𝜽𝑳𝑳 �{𝑏𝑏1}� 

c1 C {𝐶𝐶, 𝑟𝑟2, 𝑟𝑟3} {𝑐𝑐1} {𝐶𝐶} - - 𝟐𝟐𝜽𝜽𝑳𝑳 �{𝑐𝑐1}� 

d1 D {𝐷𝐷, 𝑟𝑟3} {𝑑𝑑1} {𝐷𝐷} - - 𝜽𝜽𝑳𝑳 �{𝑑𝑑1}� 

n1 r1 {𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3} {𝑎𝑎1, 𝑏𝑏1} {𝐴𝐴,𝐵𝐵} 𝐸𝐸𝑆𝑆 𝜽𝜽𝑳𝑳 6𝜃𝜃𝐿𝐿 �{𝑎𝑎1,𝑏𝑏1}� 

n2 r1 {𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3} {𝑎𝑎2, 𝑏𝑏2} {𝐴𝐴,𝐵𝐵} 𝐸𝐸𝑆𝑆 𝟐𝟐𝜽𝜽𝑳𝑳 6𝜃𝜃𝐿𝐿 �{𝑎𝑎2,𝑏𝑏2}� 

n3 r3 {𝑟𝑟3} {𝑐𝑐3,𝑑𝑑3} {𝐶𝐶,𝐷𝐷} 𝐸𝐸𝑆𝑆 𝜽𝜽𝑳𝑳 3𝜃𝜃𝐿𝐿 �{𝑐𝑐3,𝑑𝑑3}� 

n4 r3 {𝑟𝑟3} {𝑎𝑎1, 𝑏𝑏1,𝑑𝑑1} {𝐴𝐴,𝐵𝐵,𝐷𝐷} 𝐸𝐸𝑆𝑆 𝜽𝜽𝑳𝑳 3𝜃𝜃𝐿𝐿 �{𝑎𝑎1,𝑏𝑏1,𝑑𝑑1}� 

n5 r2 {𝑟𝑟2, 𝑟𝑟3} {𝑎𝑎2,𝑏𝑏2, 𝑐𝑐2} {𝐴𝐴,𝐵𝐵,𝐶𝐶} 𝐸𝐸𝑆𝑆 𝜽𝜽𝑳𝑳 4𝜃𝜃𝐿𝐿 �{𝑎𝑎2,𝑏𝑏2, 𝑐𝑐2}� 

n6 r3 {𝑟𝑟3} �𝑎𝑎1, 𝑏𝑏1,
𝑐𝑐1,𝑑𝑑1 � {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} 𝐸𝐸𝐼𝐼 𝜽𝜽𝑰𝑰 3𝜃𝜃𝐿𝐿 �{𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1,𝑑𝑑1}� 

n7 r3 {𝑟𝑟3} �
𝑎𝑎1, 𝑏𝑏1,
𝑐𝑐1,𝑑𝑑1,
𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2

� {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} 𝐸𝐸𝐷𝐷 𝜃𝜃𝐷𝐷 + 𝜃𝜃𝐼𝐼
+ 𝜃𝜃𝐿𝐿 𝜽𝜽𝑰𝑰 + 𝜽𝜽𝑳𝑳 �

{𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1,𝑑𝑑1},
{𝑎𝑎2,𝑏𝑏2, 𝑐𝑐2} � 

n8 r3 {𝑟𝑟3} �
𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1,
𝑑𝑑1,𝑎𝑎2, 𝑏𝑏2,
𝑐𝑐2, 𝑐𝑐3,𝑑𝑑3

� {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} 𝐸𝐸𝐷𝐷 2𝜃𝜃𝐷𝐷 + 𝜃𝜃𝐼𝐼
+ 2𝜃𝜃𝐿𝐿 𝜽𝜽𝑰𝑰 + 𝟐𝟐𝜽𝜽𝑳𝑳 �

{𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1,𝑑𝑑1},
{𝑎𝑎2,𝑏𝑏2, 𝑐𝑐2},

{𝑐𝑐3,𝑑𝑑3}
� 
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