SUPPLEMENTARY MATERIALS

METHODS

Tissue preparation and library construction

Leaf tissue of *Asclepias syriaca* was sampled from a single individual at the Western Illinois University research farm, raised from seed from a wild population in McDonough county, Illinois (40.29622°N, 90.89876°W; Winthrop B. Phippen s.n., OSC 226164, 226165). DNA was extracted from frozen tissue using the FastDNA Spin Kit from MPBiomedicals (Santa Ana, CA, USA) following manufacturer's protocols, modified by the addition of 40 μL 1% polyvinylpyrrolidone and 10 μL β-mercaptoethanol to the lysis solution prior to grinding.

Aliquots of isolated DNA were sheared with a BioRuptor sonicator (Diagenode Inc., Denville, NJ, USA). Two libraries were prepared following the Illumina protocol for paired-end libraries (Solexa, Inc, 2006). Ligated fragments were cut from agarose gels centered around 225 bp and 450 bp, and were amplified through 15 and 14 cycles, respectively, of polymerase chain reaction using Phusion High-Fidelity PCR Master Mix (New England BioLabs, Ipswich, MA, USA) and standard Illumina primers. Cleaned product was submitted for sequencing on an Illumina GAII Sequencer (Illumina Inc., San Diego, CA, USA) at the Center for Genome Research and Biocomputing (CGRB) at Oregon State University (Corvallis, OR, USA). One lane of the 450 bp library was sequenced with 80 bp paired-end reads, and 5 lanes of the 225 bp library were sequenced with 120 bp paired-end reads.

Frozen tissue was sent to GlobalBiologics, LLC (Columbia, MO, USA) for DNA extraction and production of mate-pair libraries using the Illumina Mate Pair Library v2 protocol with average insert sizes of 2750 bp and 3500 bp, and indexed with unique barcode sequences (Bioo Scientific, Austin, TX, USA). Purified DNA was provided to the CGRB for production of a mate-pair library using the Illumina Nextera protocol with an average insert size of 2000 bp. The 2000 bp library was sequenced on an Illumina MiSeq at the CGRB, one of 15 samples pooled on a lane, and sequenced with 76 bp paired-end reads. The 2750 bp library was sequenced on an Illumina HiSeq 2000.
sequencer at the CGRB, one of three samples pooled on a lane, and sequenced with 101 bp paired-end reads. The 3500 bp library was sequenced on an Illumina MiSeq at Oregon Health and Science University (Portland, OR, USA) with 33 bp paired-end reads (Table 2).

Genomic read processing

Pairs of reads properly mapping to the *Asclepias* chloroplast or mitochondria, with three or fewer mismatches between the target and query, were filtered out using Bowtie 2 v. 2.1.0 (scoring parameter “--score-min L,-6,0”), samtools v. 0.1.18, and bamtools v. 2.3.0 (Barnett et al., 2013; Langmead & Salzberg, 2012; Li et al., 2009). Portions of reads matching the Illumina adapter sequences were removed with Trimmmomatic v. 0.30 and the “ILLUMINAACLIP” option (Bolger et al., 2014). Duplicate read pairs from the same library were removed using the custom script fastq_collapse.py (Weitemier, 2014). Paired-end read pairs with sequences that overlapped by ≥7 bp sharing ≥90% identity were merged using the program FLASH v. 1.2.6 (parameters “-m 7 -M 80 -x 0.10”) (Magoč & Salzberg, 2011). The 3’ and 5’ ends of reads were then trimmed of any bases with a Phred quality score below 30, and any remaining reads less than 30 bp were removed using Trimmomatic.

Summary statistics were calculated using a k-mer distribution plot of reads from the 225 bp insert library after removing chloroplast and mitochondrial reads, but prior to joining with FLASH. K-mers of 17 bp were counted using BBTools script kmercountexact.sh, and estimates of genome size and heterozygosity were calculated using the program gce (Bushnell & Rood, 2015; Liu et al., 2013).

RNA-seq library preparation, sequencing, and assembly

Total RNA was extracted from the individual used for genome sequencing from leaves and buds separately, by homogenizing approximately 200 mg of fresh frozen tissue on dry ice in a Fast-Prep-24 bead mill. Cold extraction buffer (1.5 mL of 3M LiCl/8M urea; 1% PVP K-60; 0.1M dithiothreitol; Tai et al., 2004) was added to the ground tissue. Tissue was then homogenized and cellular debris pelleted at 200×g for 10 minutes at 4°C. Supernatant was incubated at 4°C overnight. RNA was pelleted by
centrifugation (20,000 × g for 30 minutes at 4°C) and cleaned using a ZR Plant RNA MiniPrep kit (Zymo Research, Irvine, CA, USA). For each tissue type, an RNA-seq library was prepared using the Illumina RNA-Seq TruSeq kit v. 2.0 with the modifications of Parkhomchuk et al. (2009) to allow strand-specific sequencing by dUTP incorporation.

Libraries were sequenced on an Illumina HiSeq 2000 at the CGRB to yield 101 bp single-end reads. Before further analysis, reads that did not pass the Illumina chastity and purity filters were removed. Trimmomatic 0.20 (Bolger et al., 2014) was used to trim the final base of each read, leading and trailing bases with quality scores below Q20, and all following bases if a sliding window of 5 bp did not have an average quality of at least Q30. Reads shorter than 36 bp after trimming were excluded.

Transcripts were assembled de novo using Trinity (Release 2013-08-14) (Grabherr et al., 2011) for bud and leaf reads separately, as well as combined into a single data set using default settings, except for using a minimum contig length of 101 bp. The same settings were also used to assemble RNA-seq data from leaf tissue of the same A. syriaca individual from a library made using ribosomal RNA subtraction (Straub et al., 2013). Best scoring open reading frames (ORFs) were determined for each library using the TransDecoder utility provided with Trinity (Haas et al., 2013). Transcripts were annotated using Mercator (Lohse et al., 2014) and TRAPID (Van Bel et al., 2013).

Comparative transcriptome and gene family evolution analyses in Apocynaceae

For a comparative analysis, transcriptomes were obtained for four other species of Apocynaceae. *Catharanthus roseus* and *Rauvolfia serpentina* transcriptomes were downloaded from the Medicinal Plant Genomics Resource project database (http://medicinalplantgenomics.msu.edu; Góngora-Castillo et al., 2012), the *Tabernaemontana elegans* transcriptome was downloaded from the PhytoMetaSyn Project database (www.phytometasyn.ca; Xiao et al., 2013), and the *Rhazya stricta* transcriptome was downloaded from NCBI (Yates et al., 2014). Transcriptomes were checked for completeness using BUSCO v. 1.22 (Simão et al., 2015). Transcripts of all
species were assigned to reference gene families using TRAPID. Reference gene family assignments for two outgroups, *Coffea canephora* (Denoeud et al., 2014) and *Vitis vinifera* (PLAZA v. 2.5; Proost et al., 2009) were obtained.

A phylogenetic tree to use as a framework for comparative analysis was produced using whole plastomes. Four sequences were downloaded from GenBank: A. *syriaca* (NC_022432), *C. roseus* (NC_021423), *R. stricta* (NC_024292), and *V. vinifera* (NC_007957). Plastome sequences for *T. elegans* and *R. serpentina* were assembled from chloroplast transcripts present in the downloaded transcriptomes by iterative mapping of transcripts to the *C. roseus* sequence in Geneious v. 8. Full plastome sequences were aligned using Mafft v. 7.308 (Katoh et al., 2002; Katoh & Standley, 2013). CDS, tRNA, and rRNA genes were extracted from the alignment. Genes with greater than 50% missing data for either *R. serpentina* or *T. elegans* were removed. A maximum likelihood (ML) analysis of the plastid data matrix was conducted in RAxML v. 8.0.26 using the GTR plus gamma model. One thousand bootstrap replicates were performed. The plastid ML tree was converted to an ultrametric tree using divergence times within Apocynaceae based on the analysis of Fishbein et al (In press) and estimates of Wikström et al. (2015) for the *Coffea* split from Apocynaceae and *Vitis* split from Gentianales. In order to examine changes in gene family sizes across Apocynaceae transcriptomes, BadiRate v. 1.35 (Librado et al., 2012) was run using the BDI (birth-death-innovation) stochastic model with a free rate (FR) branch model where each branch can have a different gene turn-over rate. Gains and losses were inferred using Wagner parsimony.

Genomic sequence assembly

Processed read-pairs were assembled into contigs using Platanus v. 1.2.1 (Kajitani et al., 2014). Platanus is designed to assemble highly heterozygous diploid genomes, and initially uses several k-mer sizes during assembly. *Asclepias* reads were assembled with an initial k-mer size of 25 bp with a k-mer step increase of 10 bp up to a maximum k-mer of 110 bp. As part of the expectation for heterozygous assembly, Platanus can merge contigs sharing high identity. We allowed contigs sharing 85% identity to be merged (assembly parameters “-k 25 -u 0.15”).
Scaffolding was performed with Platanus, setting the paired-end reads as “inward pointing” reads and the mate-pair reads as “outward pointing” reads. Reads were mapped to scaffolds using an initial seed size of 21 bp, one link between contigs was sufficient to align them into a scaffold, and scaffolds sharing 85% identity could be merged (scaffolding parameters “-s 21 -l 1 -u 0.15”).

Gaps between scaffolds were closed via local alignment and assembly of reads around the gaps using Platanus. An initial seed size of 21 bp was used to include reads in the mapping around a gap, and a minimum overlap of 21 bp between the newly assembled filler contig and the edges of the scaffold was required to use that contig to fill the gap (gap close parameters “-s 21 -k 21 -vd 21 -vo 21”).

Transcripts were mapped to Asclepias scaffolds ≥1 kbp using BLAT v. 32x1, and those scaffolds were merged where they were linked by one or more transcripts (Kent, 2002). This was performed with the program Scubat (<https://github.com/elswob/SCUBAT> accessed 12/17/2015) modified so that scaffolds would not be clipped when joined by cap3 v. 02/10/15 (Elsworth, 2012; Huang & Madan, 1999; Tange, 2011).

Contaminant removal

Merged scaffolds were compared against a genomic database of potentially contaminating organisms with the program DeconSeq standalone v. 0.4.3 (Schmieder & Edwards, 2011). Contaminant databases were downloaded from the DeconSeq website representing bacteria, archaea, viruses, 18S rRNA, zebrafish, mouse, and several human genomes (<http://deconseq.sourceforge.net> accessed January 20, 2016). Fungal genomes were obtained from the National Center for Biotechnology Information (NCBI) including *Alternaria arborescens* accession AIIC01, *Aspergillus fumigatus* AAHF01, *Bipolaris maydis* AIHU01, *Botrytis cinerea* assembly GCA_000832945.1, *Cladosprium sphaerospermum* AIIA02, *Fomitopsis pinicola* AEHC02, *Fusarium oxysporum* AAXH01, *Galerina marginata* AYUM01, *Hypoxylon sp.* JYCQ01, *Penicillium expansum* AYHP01, *Rhodotorula graminis* JTAO01, *Saccharomyces cerevisiae* assembly GCA_000146045.2, and *Trichoderma reesei* AAIL02 (Amselem et al., 2011; Firrincieli et
al., 2015; Floudas et al., 2012; Goffeau et al., 1997; Hu et al., 2012; Li et al., 2015; Ma et al., 2010; Martinez et al., 2008; Ng et al., 2012; Nierman et al., 2005; Ohm et al., 2012; Riley et al., 2014; Shaw et al., 2015). The genome of *Solanum lycopersicum* (ITAG 2.4) was downloaded from the Sol Genomics Network (The Tomato Genome Consortium, 2012). The fungal and tomato genomes were prepared as DeconSeq databases following the DeconSeq website, including filtering of repeated Ns, removal of duplicate sequences, and indexing with a custom version of BWA released with DeconSeq (Li & Durbin, 2010; <http://deconseq.sourceforge.net> accessed January 20, 2016).

Genomes obtained from the DeconSeq website and the fungal genomes were used as contaminant databases, the tomato genome was used as a retain database. Scaffolds matching one of the contaminant genomes with ≥80% identity along ≥80% of the scaffold length were excluded as contaminants. Those scaffolds matching both a contaminating genome and the tomato genome were retained.

Gene prediction and annotation

A library of *Asclepias* repetitive elements was created following guidelines in the MAKER Genome Annotation Pipeline online documentation (Jiang, 2015). The program RepeatModeler v. open-1.0.8 was used to integrate the programs RepeatMasker v. open-4.0.5, rmblastn v. 2.2.28, RECON v. 1.08, Tandem Repeats Finder v. 4.07b, and RepeatScout v. 1.0.5 (Bao & Eddy, 2002; Benson, 1999; Price et al., 2005; Smit et al., 2015). Repeat models initially missing a repeat annotation were compared, using BLAT, against a library of class I and class II transposable elements acquired from the TESeeker website (Kennedy et al., 2010, 2011), and matching sequences provided an annotation. Remaining unannotated models were submitted to the online repeat analysis tool, CENSOR, and provided annotations with a score ≥400 and ≥50% sequence similarity (Kohany et al., 2006). A set of proteins from *Arabidopsis thaliana* was filtered to remove proteins from transposable elements, then compared using BLASTX against the *Asclepias* repeat models. The program ProtExcluder.pl v. 1.1 then used the BLASTX output to remove repeat models and flanking regions matching *Arabidopsis* proteins (Altschul et al., 1990; Jiang, 2015).
The set of scaffolds ≥1 kbp were annotated via the online annotation and curation tool GenSAS v. 4.0 (Humann et al., 2016; Lee et al., 2011), which was used to implement the following tools for repeat masking, transcript and protein mapping, ab initio gene prediction, gene consensus creation, and mapping of Asclepias predicted proteins:

Repeats in the assembled sequence were masked via RepeatMasker v. open-4.0.1 using the Asclepias repeat models and using models developed from dicots more broadly (Smit et al., 2015).

Multiple datasets were mapped onto Asclepias scaffolds in order to assist with gene prediction. The best ORFs from assembled Asclepias transcripts were mapped using both BLAT and BLAST (expect < 1e-50, 99% identity). Assembled transcripts from *Calotropis procera*, a member of the same subtribe, Asclepiadinae, were mapped with BLAT (Kwon et al., 2015). Proteins from *Coffea canephora*, a member of the same order, Gentianales, were mapped with BLASTX (e<0.0001; Denoeud et al., 2014).

Genes were predicted using the ab initio tools Augustus v. 3.1.0, SNAP, and PASA (Haas et al., 2003; Korf, 2004; Stanke et al., 2008). Augustus was run using gene models from *Solanum*, finding genes on both strands, and allowing partial models; SNAP was run using models from *Arabidopsis thaliana*. PASA was informed by the best ORFs from assembled Asclepias transcripts.

Multiple lines of evidence were integrated into a gene consensus using EVidenceModeler (Haas et al., 2008) with the following weights: Augustus, 1; SNAP, 1; *Coffea* proteins, 5; Asclepias transcripts (BLAST), 7; Asclepias transcripts (BLAT), 7; *Calotropis* transcripts, 5; PASA, 7. Consensus gene models were then refined using PASA, again informed by Asclepias transcripts.

Predicted proteins were compared to the NCBI plant RefSeq database using BLASTP (expect < 1e-4, BLOSUM62 matrix; Pruitt et al., 2002), as well as being mapped against protein sequences from *Coffea* and *Catharanthus roseus*, a member of a different subfamily within Apocynaceae (expect < 1e-4; Denoeud et al., 2014; Kellner et al., 2015). Protein families were classified using the InterPro database and InterProScan v. 5.8-49.0 (Jones et al., 2014; Mitchell et al., 2015). Transfer RNAs were identified using
tRNAscan-SE v. 1.3.1 (Lowe & Eddy, 1997). Additional open reading frames were found using the getorf tool from the EMBOSS suite, accepting a minimum of 30 bp (Rice et al., 2000).

Some predicted proteins were missing one or more exons, either because they were fragmented on the ends of scaffolds or, rarely, transcript evidence predicted exons with non-canonical splice sites. The predicted coding sequence produced by GenSas for some of these proteins was out of frame. In these cases the coding sequence was translated under all reading frames and a translation lacking internal stop codons was selected, if available.

An estimate of the completeness of the assembled gene space was calculated using the program BUSCO v. 1.22 and a set of 956 conserved single copy plant genes (Simão et al., 2015). BUSCO was run independently on the set of coding sequences returned following gene prediction as well as on the assembled scaffolds ≥1 kbp using Augustus gene prediction with Solanum models. Predicted genes from *Asclepias*, *Catharanthus*, *Coffeea*, and *Vitis vinifera* (obtained from the PLAZA 3.0 database) were clustered into orthogroups using OrthoFinder v. 0.7.1 (Emms & Kelly, 2015; Proost et al., 2015; The French-Italian Public Consortium for Grapevine Genome Characterization, 2007).

Gene analyses

The P5βR region (PLAZA v. 2.5 gene family HOM000752) was identified in assembled scaffolds with BLAT (Kent, 2002), using the P5βR sequences from *Asclepias curassavica* (ADG56538; Bauer et al., 2010) and *Catharanthus roseus* (KJ873882-KJ873887; Munkert et al., 2015) as references. A maximum likelihood tree was constructed from peptide sequences of two *A. syriaca* regions with high identity to P5βR, six *Catharanthus* P5βR sequences, the *A. curassavica* sequence, sequences from *Digitalis purpurea* and *D. lantata* (ACZ66261, AAS76634), representing P5βR and P5βR2 paralogs, respectively, and a sequence from *Picea sitchensis* (ABK24388). P5βR sequence alignments were performed using MUSCLE, as implemented in Geneious v. 9.1.5, with a maximum of 10 iterations (Edgar, 2004; Kearse et al., 2012). The optimal
models of amino acid substitution, rate variation among sites, and equilibrium frequencies were inferred using the Akaike and Bayesian information criteria, as implemented in the online tool PhyML 3.0, which was also used to infer trees under those models and incorporating aBayes support values (Anisimova et al., 2011; Guindon et al., 2010; Guindon & Gascuel, 2003).

SNP finding and targeted enrichment probe development

The Platanus genome assembler uses a de Bruijn graph approach for contig assembly (Kajitani et al., 2014). Certain types of branches in this graph, known as “bubbles,” may be caused by heterozygosity and are saved by the program for use in later assembly stages. Here, saved bubbles were filtered to identify those likely to represent heterozygous sites in low-copy regions of the genome.

The program CD-HIT-EST v. 4.5.4 was used to cluster any bubbles sharing ≥90% identity, which were removed, leaving only unique bubbles (Li & Godzik, 2006). Unique bubbles were mapped against the set of Asclepias scaffolds ≥1 kbp using BLAT at minimum identity thresholds of 90% and 95% (Kent, 2002). A set of 4000 SNP probes developed from a preliminary study using a similar approach, but from a different genome assembly, were mapped against the assembly presented here with a 90% identity threshold (Weitemier et al., 2014). Custom scripts were written to select one appropriate bubble from each scaffold <10 kbp, and up to two bubbles from scaffolds ≥10 kbp, up to a total of 20,000 bubbles. Bubbles mapping only once within the ≥90% identity mapping analysis were selected first, progressively adding bubbles that either mapped to ≤4 locations in the ≥90% identity mapping or mapped to ≤3 locations in the ≥95% identity mapping. Bubble sequences were trimmed to 80 bp, centered around the SNP site where possible. Potential SNP probes were further analyzed by MYcroarray (Ann Arbor, MI, USA) and excluded if they were predicted to anneal in a solution hybridization reaction to >10 locations within the Asclepias genome at 62.5-65°C or >2 locations above 65°C. Twenty thousand RNA oligos suitable for targeted enrichment, matching 17,684 scaffolds, were produced by MYcroarray.
Linkage mapping population

Mature follicles were collected from the open pollinated plant that was the subject of genome sequencing. Approximately 100 seeds from six follicles collected from four stems of this plant (1, 3, 1, and 1 follicle per stem) were germinated and grown at Oklahoma State University. Due to the pollination system of *Asclepias*, seeds in a fruit are almost certainly fertilized by a single pollen donor (Sparrow & Pearson, 1948; Wyatt & Broyles, 1990), meaning up to six paternal parents are represented among the 96 mapping offspring.

Seeds were surface sterilized in 5% bleach and soaked for 24 hr in distilled water. The testa was nicked opposite from the micropylar end and the seeds germinated on moist filter paper, in petri dishes, in the dark, at room temperature. Germination occurred within 4-7 days, and seedlings where planted into MetroMix 902 media in plug trays when radicles attained a length of 2-3 cm. Seedlings were again transplanted to 3-inch deep pots following the expansion to two sets of true leaves. Seedlings were grown under high intensity fluorescent lights in a controlled environment chamber at 14 hr daylength at approximately 27°C. Plants were grown for approximately 90 days, harvested, and rinsed in distilled water, and frozen at -80°C. DNA was extracted from roots, shoots, or a combination of roots and shoots using the FastDNA® kit (MP Biomedicals, Santa Ana, California) and Thermo Savant FastPrep® FP120 Cell Disrupter (Thermo Scientific, Waltham, MA, USA). DNA quantity and quality were visualized using agarose gel electrophoresis and quantified with a Qubit® fluorometer (Invitrogen, Carlsbad, CA, USA) and Quant-iT™ DNA-BR Assay Kit.

Ninety-six Genomic DNA samples were diluted as necessary with ultrapure water to obtain approximately 3 μg in 100 ul and sheared on a Bioruptor UCD-200 (Diagenode) at low power for 12 cycles of 30 s on/30 s off. Several samples required sonication for 5-10 additional cycles to achieve a high concentration of fragments at the target size of 300-400 bp. Illumina-compatible, dual-indexed libraries were produced with the TruSeq® HT kit (Illumina), each with a unique barcode.
Barcoded libraries were pooled by equal DNA mass in three groups of 32 samples. These were enriched for targeted SNP regions using RNA oligos and following MYcroarray MYbaits protocol v. 3.00. Enriched pools were then themselves evenly pooled and sequenced with 150 bp paired-end reads on an Illumina HiSeq 3000 at the CGRB, producing 120.3 Mbp of sequence data (NCBI short read archive: SRX2163716-SRX2163811).

Linkage analyses

Reads were processed using Trimmomatic v. 0.33 to remove adapter sequences, bases on the ends of reads with a Phred quality score below three, and clipping once a sliding window of 4 bp fell below an average quality score of 17 (Bolger et al., 2014). Processed reads for each sample were mapped onto the assembled scaffolds using bowtie2 with “sensitive” settings and a maximum fragment length of 600 bp (Langmead & Salzberg, 2012). Reads from the 225 bp insert library of the sequenced individual were also mapped back onto assembled scaffolds using the same settings. Mappings for all individuals and the parent were combined using samtools v. 0.1.16 and SNPs called using the bcftools “view” command (Li et al., 2009).

The file containing all variants was converted to a format suitable for the R package OneMap, using a custom perl script (Tennessen, 2015), retaining only sites heterozygous in one parent, the maternal sequenced individual. In this filtering the minor genotype abundance (either heterozygote or homozygote) needed to be at least 24 across 90 samples, loci could have up to 30% missing individuals, and potential genotypes within individuals were ignored if their Phred probability score was 15 or above (i.e., of the three possible genotypes AA, Aa, aa, one should be most probable with a low Phred score and the other two less probable with Phred scores above 15). This retained a subset of SNPs where the maternal parent was heterozygous and the paternal parents for all offspring were homozygous for the same allele.

A subset of 22 full siblings, those from the follicle producing the most offspring, were filtered in the same manner, thereby retaining SNPs heterozygous in only the maternal or the paternal parent. Filtering in this set required a minor genotype abundance
of at least five, loci could have up to four missing individuals, and genotypes with Phred probabilities of 20 or above were ignored (i.e., the final genotype calls are more certain because alternative genotypes are less likely).

SNP sets were clustered into linkage groups in R v. 3.2.2 using the package OneMap v. 2.0-4 (Margarido et al., 2007; R Core Team, 2014). One SNP from each scaffold was selected from SNPs among the full set of individuals, and were grouped using a logarithm of odds (LOD) threshold of 8.4. This clustered SNP loci into eleven clear groups, referred to here as the core linkage groups.

From the full sibling set of SNPs, those held on the same scaffold and with identical genotypes across individuals (i.e., in perfect linkage) were grouped, and SNPs on different scaffolds in perfect linkage with no missing data were grouped. This was performed separately for loci where either the maternal or paternal parent was heterozygous. These loci were clustered into groups using LOD scores 6.1, 6.0, and 5.5. Each of these groupings produced hundreds of groups, but each contained about 22 groups that were substantially larger than the others.

A custom R script was used to combine the linkage group identity of scaffolds in the core linkage groups with scaffolds and groups in the sibling sets. For example, scaffold A could be assigned to a linkage group if it was in perfect linkage in the sibling set with scaffold B, and scaffold B was also present in the core linkage groups. If multiple scaffolds were perfectly linked, but associated with different core linkage groups, no unknown scaffolds would be assigned unless the most common core linkage group was three times as common as the next core group.

Linkage groupings in the sibling sets could be assigned to core linkage groups based on the membership of the scaffolds they contained. If the markers indicating that a sibling group should belong to a certain core linkage group were ten times as common as markers supporting a second most common assignment, then the sibling group was assigned to the core group, and all unknown scaffolds it contained also assigned to that group. (E.g., sibling group A contains ten scaffolds known to be on core linkage group 1, one scaffold known to be on core linkage group 2, and one unknown scaffold; sibling
group A is assigned to core linkage group 1 and the unknown scaffold is similarly assigned.

This process was performed iteratively, progressively assigning scaffolds to core linkage groups. It was performed first with the sibling set grouped with LOD 6.1, then the grouping with LOD 6.0, finally the grouping with LOD 5.5.

Syntenic within Gentianales

Scaffolds found within the core linkage groups were mapped to *Coffea* coding sequences (BLASTN, expect < 1, best hit chosen) and mapped to their location on *Coffea* pseudochromosomes. Six *Asclepias* linkage groups contained scaffolds that mapped preferentially to a single *Coffea* pseudochromosome, which in turn had *Asclepias* scaffolds mapping preferentially from that linkage group. From these six linkage groups one marker was selected for every 1 Mbp segment of the *Coffea* chromosome. Recombination fractions were measured among these loci using OneMap (retaining “safe” markers with THRES=5) and converted to cM using the Kosambi mapping function.
REFERENCES

Rhodotorula graminis WP1. Frontiers in Microbiology, 6, 978.
https://doi.org/10.3389/fmicb.2015.00978

https://doi.org/10.1126/science.1221748

https://doi.org/10.1038/nbt.1883

Figure S1: Synteny between *Asclepias* linkage group 2 and *Coffea* pseudochromosome 10.

A subset of scaffolds from *Asclepias* linkage group 2 mapped to their positions on *Coffea canephora* pseudochromosome 10, and ordered along the y-axis by recombination distance within *Asclepias*.
Figure S2: Synteny between *Asclepias* linkage group 8 and *Coffea* pseudochromosome 3.

A subset of scaffolds from *Asclepias* linkage group 8 mapped to their positions on *Coffea canephora* pseudochromosome 3, and ordered along the y-axis by recombination distance within *Asclepias*.
Figure S3: Synteny between *Asclepias* linkage group 4 and *Coffea* pseudochromosome 8.

A subset of scaffolds from *Asclepias* linkage group 4 mapped to their positions on *Coffea canephora* pseudochromosome 8, and ordered along the y-axis by recombination distance within *Asclepias*.
Figure S4: Synteny between *Asclepias* linkage group 6 and *Coffea* pseudochromosome 6.

A subset of scaffolds from *Asclepias* linkage group 6 mapped to their positions on *Coffea canephora* pseudochromosome 6, and ordered along the y-axis by recombination distance within *Asclepias*.
Figure S5: Synteny between *Asclepias* linkage group 7 and *Coffeea* pseudochromosome 11.

A subset of scaffolds from *Asclepias* linkage group 7 mapped to their positions on *Coffeea canephora* pseudochromosome 11, and ordered along the y-axis by recombination distance within *Asclepias*.
Figure S6: Synteny between *Asclepias* linkage group 9 and *Coffea* pseudochromosome 1.

A subset of scaffolds from *Asclepias* linkage group 9 mapped to their positions on *Coffea canephora* pseudochromosome 1, and ordered along the y-axis by recombination distance within *Asclepias*.
Table S1: Shared orthogroups among *Asclepias*, *Catharanthus*, *Coffea*, and *Vitis*.
Values along the diagonal are the number of orthogroups found within that genus.

<table>
<thead>
<tr>
<th></th>
<th>Asclepias</th>
<th>Catharanthus</th>
<th>Coffea</th>
<th>Vitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asclepias</td>
<td>9,837</td>
<td>9,275</td>
<td>9,439</td>
<td>8,753</td>
</tr>
<tr>
<td>Catharanthus</td>
<td>12,709</td>
<td>12,111</td>
<td>11,072</td>
<td></td>
</tr>
<tr>
<td>Coffea</td>
<td>13,233</td>
<td>11,688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis</td>
<td>12,117</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2: Genomic coordinates of *Asclepias* P5βR genes.

Under **Scaffold ID** the linkage group of the scaffold is preceded by “L.G.” **Called:** Whether the gene prediction consensus accurately predicted the correct exons. The prediction that failed did predict a gene product, but included exons from adjacent genes. Ψ-progesterone 5β-reductase was accurately predicted to not produce a product.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Scaffold ID</th>
<th>Start</th>
<th>Stop</th>
<th>Called</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesterone 5β-reductase 1</td>
<td>LG11_scaffold_m502</td>
<td>31537</td>
<td>33459</td>
<td>No</td>
</tr>
<tr>
<td>Ψ-progesterone 5β-reductase</td>
<td>LG11_scaffold_m502</td>
<td>33942</td>
<td>34876</td>
<td>NA</td>
</tr>
<tr>
<td>Progesterone 5β-reductase 6</td>
<td>LG00_scaffold217668</td>
<td>1305</td>
<td>136</td>
<td>Yes</td>
</tr>
</tbody>
</table>