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Data and code for all the figures and tables can be found at (https://github.com/erwhitel/

time-series-project). All analyses were run using R (R Core Team 2016).
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S1 Detailed example of subsampling and power calcu-
lations

Here, we illustrate how we performed the subsampling and power calculations for a specific
population. We provide more detail here than in the main manuscript. As an example,
we examine a 35-year time series of Bigeye tuna (Thunnus obesus), one species in the
Global Population Dynamics Database (NERC Centre for Population Biology 2010). Simple
linear regression indicates a significant decrease for this population with an estimated slope
coefficient of -0.0189581. We assume that this significant increase over 35 years is in fact the
“true trend®. In statistical jargon, the 35-year trend is an effect that is actually present; we
can reject the null hypothesis of no trend. We can then use this as a benchmark to see if
subsamples of the time series also indicate a significant increase.
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Figure Al: (a) Population size of Bigeye tuna ( Thunnus obesus) over time. The line is the
best fit line from linear regresssion. (b) Statistical power for different subsets of the time
series in panel a.

We then perform a subsampling routine to estimate the minimum time required 7,;, (similar
to Gerber, DeMaster, and Kareiva (1999)). This is the same routine we used for the results
in the main manuscript.

1. We first extract all contiguous subsamples of the time series. This leads to 34 two-year
subsamples, 33 two-year subsamples, and so forth until a single 35-year subsample.

2. For each subsample, we conduct linear regression and extract model coefficients and
p-values.

3. We can call each set of subsamples, of the same length, a set. The fraction of subsamples
within a set that show significant trends (significant slope coefficient « less than 0.05)
is the statistical power. It is important to note that we only consider subsamples to be
significant if they are significant in the same direction as the complete 35-year time
series. In other words, we are conducting a one-tailed test.
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4. We can then plot statistical power as a function of time series length (Fig. Alb). As
expected, we can see that power increases with the more years that are sampled.

5. Then, we determine an appropriate level of statistical power that we find acceptable.
Traditionally, this has been at 0.8, however, this is purely historical. Statistical power
of 0.8 implies if a true trend is present, or there is a real change in abundance, then we
will detect this trend 0.8 fraction of the time.

6. We then determine the minimum time series length (7,,,;,) required to achieve that level
of statistical power. Here, T,,;, is the first point in Fig. Alb where following points are
also above 0.8. In this example, T}, is 22.

Therefore, a minimum of 22 years of continuous monitoring are required (for 0.8 statistical
power at 0.05 significance level) to determine long-term changes in abundance.

S2 Additional results from the main manuscript

S2.1 Predictors of minimum time required

In the main text, we explained how the minimum time required strongly correlated with the
trend strength, temporal autocorrelation, and variance in population size. Here, we use a
generalized linear model framework with a Poisson error structure to determine explanatory
variables of the minimum time required. We use the same 878 populations as in the main
text. In figure A2, we show a set of residual plots for the regression. We then show the
coefficient estimates and levels of significance in table Al.

Table A1l: Output of generalized linear model to examine
predictors of the minimum time required for determing
long-term population trends.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.7405513  0.0242742  154.09595 0
abs_overall trend -104.0533454  3.0941097 -33.62949 0
autocorrelation -0.4899533  0.0431769 -11.34757 0
variance 18.7366110  0.6404458  29.25557 0

Our model with trend strength, autocorrelation, variance, and generation length accounted
for 72.45% of the variation in the minimum time required (Table A1l). However, we also
found trend strength and variance to be strongly correlated with one another. Therefore, we
ran two additional models with either trend strength or variance, but not both together. This
resulted in lower explained deviance (analogue to R?) of 53.03% and 45.03%, respectively.
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Figure A2: Output of generalized linear model with a Poisson error structure for predicting
the minimum time required with explanatory variables of the absolute value of the slope
coefficient (or trend strength), temporal autocorrelation, and variability in population size.
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S2.2 Minimum time required and biological correlates

In the main manuscript, we examined the minimum time required to detect a significant
trend in abundance over time using linear regression. As detailed in the main manuscript
the minimum time required was around 15, but there was a wide distribution. Therefore,
we were interested in potential explanatory variables of the minimum time required. In
the main manuscript, we examined characteristics of the time series itself, like variability,
autocorrelation, and the trend in abundance over time. Here, we combined our time series
data with a data on life history characteristics of amniotes from Myhrvold et al. (2015).
There was life history information available for 547 populations representing 315 different
species, all of which were birds (Aves class).
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Figure A3: Mimimum time required versus (a) generation length (years), (b) litter size (n),
(c) adult body mass (grams), (d) maximum longevity (years), (e) egg mass (grams), and (f)
incubation (days). The lines in each plot represent the best fit line from linear regression.

We then correlated minimum time required for each population with its corresponding life
history characteristics. In figure A3 we examined minimum time required versus generation
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length (years), litter size (n), adult body mass (grams), maximum longevity (years), egg
mass (grams), and incubation (days). None of these variables had much explanatory power
in accounting for the variance in the minimum time required. We ran a generalized linear
model (with a Poisson error structure) and found that these six variables only accounted for
6.87% of the explained deviance in minimum time required.
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S2.3 Minimum time series and biological class

Minimum time required differed for different biological classes. For instance, more time is
required for species within the Actinopterygii class compared to other species (Fig. Ada).
These differences between biological classes can be explained by differences in population
variability, with species in the Actinopterygii class experiencing larger inter-annual variability
in population size (Fig. A4c).
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Figure A4: (a) Minimum time required to estimate change in abundance for species class, (b)
long-term trend (estimated slope coefficient) by species class, (¢) interannual variability in
population size by species class, and (d) temporal autocorrelation by species class.
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S2.4 Sensitivity analysis of significance level and power

Estimates of T},;,, depend strongly on the values used for the statistical significance level («)
and the probability of type II error (), both of which are set by the practitioner. Again,
statistical power is 1 — 3. Here we used simulations of the model described in the main
manuscript. The model simulates linear trends in population abundance. We explored
how estimates of T,,;, are affected by changes in each of these parameters. We see that
the minimum time required increases with increases in statistical power or decreases with
increases in the threshold for statistical significance (Fig A5).
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Figure A5: Minimum time required to assess long-term trends in abundance for values of
statistical significance («) and power (1 — /).

S3 Minimum time calculations testing exponential
growth

In the main text, we evaluated the minimum time required to determine long-term trends in
abundance via linear regression. This process examined linear trends in abundance over time.
Here we examine the minimum time required to estimate long-term trends that are either
exponential growth or decay. We use the same methods as described in the previous sections,
but we take the log of population density, or abundance.
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Figure A6: Distribution of the minimum time required in order to detect a significant trend
(at the 0.05 level) in log(abundance) given power of 0.8.

We see that the distribution of 7}, is almost identical to that in the main manuscript (Fig.
A6). This is perhaps not surprising as most time series that would significantly increase or
decrease linearly would probably also significantly increase or decrease at an exponential
rate. Further, the calculations here and in the main manuscript both use linear regression.
Therefore both calculations estimate the same number of parameters.
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S4 Simulations with more complicated population

model

In the main text, we showed how a simple population model could be simulated repeatedly
to estimate the power obtained with time series of increasing length (Bolker 2008; Johnson et
al. 2015). The model in the main text simulated linear population growth with only a slope
coefficient, y-intercept, and noise parameter required. This model is purely phenomenological
and does not include any species life history. Here, we use the same routine as the main
text, but simulate from a more biologically-realistic population model. We use the model
described in White, Nagy, and Gruber (2014). The model is a stochastic, age-structured
population model that includes density-dependence for lemon sharks (Negaprion brevirostris)
in Bimini, Bahamas.
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Figure A7: Statistical power for different length of time series simulations for a lemon shark
population in Bimini, Bahamas.

Here, we parameterize the model for a situation where adult mortality rate is high enough
to cause a population decline. In the same way we simulated models in the main text, we
simulate this more biologically-realistic model for different lengths of time. For each length of
time, we calculate the statistical power. Similar to results with the simpler model, statistical
power generally increases with longer sampling time (Fig. A7). In this example, the minimum
time required (7},;,) t0 obtain at least 0.8 statistical power, given a significance level of 0.05,
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is 27 years.

S5 Minimum time required to estimate geometric
growth rate

Instead of detecting a trend over time with linear regression, we could also calculate the
geometric growth rate of the population. In figure A8, we show how to calculate growth rates
for subsamples of a time series. First, we created subsamples of each possible length from
the full 35 year time series, as we did in the main next. Next, we calculated the mean and

standard deviation of growth rates for each possible time series length (Fig. A8b). Lastly, we

observed-theoretical
theoretical
of each time series length (observed) and the overall population growth rate (theoretical). In

Fig. A8c), we show the percent error as a function of time series length. Here we define the
minimum time required as the minimum number of years to achieve less than 20% error.

calculated the percent error percent error = 100 x ’ ‘ between the mean
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Figure A8: Example of calculating minimum time required for growth rate estimation. (a)
European herring gull (Larus argentatus) scaled density over time, (b) mean and standard
deviation of growth rate for subsamples of entire time series, and (c) the percent error between
mean estimated growth rate and the true long-term growth rate. The vertical bar denotes
the minimum time required to estimate growth rate within 20% error.

We applied the same calculations to 1032 population time series. We then obtain a distribution
of the minimum time required to measure the “true’ long-term growth rate (Fig. A9). We see
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a bimodal distribution with many populations required 30+ years to estimate the long-term
growth rate. The large number of short years required is due to cases where the entire time
series is consistently increasing or decreasing at the same rate.
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Figure A9: Histogram of the minimum time required in order to estimate the long-term
growth rate within 20% error.
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S6 Using Generalized additive model to identify sig-
nificant trends

In the main text, we examined the minimum time required to identify a trend in abundance
via linear regression. This approach allowed us to identify increases or decreases, but a linear
model may not always be a good fit. Generalized additive models (GAMs) are more general
than general linear models and allow more flexibility (Wood 2006). GAMs are models where
a response variable depends on unknown smooth functions of explanatory variables. GAMs,
therefore, can identify relationships between response variables and explanatory variables
that are non-linear and perhaps more complicated. The downside of GAMs is they typically
require more data and are also prone to overfitting.

Here, we conduct the same analyses in the main text, but instead calculate the minimum
time series required to detect trends over time according to a GAM model. We hypothesized
that GAMs should require less time to detect a trend as they are more flexible than linear
regression. We provide an example that shows statistical power increases with more time

sampled (Fig. A10).
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Figure A10: (a) Time series for Bigeye tuna (Thunnus obesus) with corresponding fitted
GAM model in red and (b) statistical power as a function of the number of years sampled.
The horizontal ine at 0.8 indicates the minimum threshold for statistical power and the
vertical line denotes the minimum time required to achieve 0.8 statistical power.

We then fit GAM models for 851 populations. We found a similar distribution of minimum
time required as in the main text for linear regression (Fig. A1l). However, in line with our
hypothesis, the GAM models did result in a lower mean minimum time required of 14.65
years compared to the results from the main text of 16.45 years.
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Figure A11: Distribution of the minimum time required in order to detect a significant trend

(at the 0.05 level) in abundance according to a GAM model given statistical power of 0.8.
The smoothing parameter was set to 3 for each population.
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