
Metrics Framework Infrastructure Specification

Abstract

This document describes the features and functionality of the Metrics Framework Infrastructure. The
main procedures detail in this specification are associated with the registry and monitoring metrics,
and the collection of data from metrics executions.

Status of This Document

This is an editor's draft of a document for the Development and Analysis of ELIXIR Metrics
Framework. Distribution of this document is unlimited.

Table of Contents

Introduction
Basic Grammar and Conventions
Metrics Framework Definition

Metrics Framework Elements
Component
Components Registry
Data and Monitoring Repository

Metrics Framework Functionality
Component Description
Component Registry
Monitoring and Collection Data

Metrics Framework Analysis and Design
Example
References

1. Introduction

Measuring the impact of bioinformatics resources is of paramount importance. Metrics encourage
attainment of certain standards of quality of resources. We propose the development of a metrics
framework to provide an infrastructure capable of collect/register different metrics definitions and their
functionalities, process them and provide a user interface to access these results. Data collected
from each metric can be used as an indicator of quality that measure the impact of specific
bioinformatic resource (software, biological databases, knowledge diffusion, computational
performance, etc.) which suggesting a certain standard of quality.

This framework consists of three elements which work together for carrying out the complete registry
and monitoring processes. The first element Component, define the metric schema and functionality;
the second component Components Registry, register the component metadata into a registry to
make available for use; The third element Data and Monitoring Repository, install and execute
components and collect data from the component execution. Data generated from each component
execution will be able for their visualization

This document provides the Metrics Framework specification, in addition to definition, description and
functionality of each element of this infrastructure. Also, this document contains the system analysis
and design.

2. Basic Grammar and Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [​RFC2119​].

3. Metrics Framework Definition

3.1. Metrics Framework Elements

The metrics framework design follows a modular structure, consisting of three autonomous elements:
Component, Components Registry and, Data and Monitoring Repository. These elements interact
with each other and besides this interaction, a user can also interact independently with each
element using an user interface adjust to each setting.

3.1.1. Component

A component is the basic unit defined into the Metrics Framework. Each component are defined
through two differentiated parts:

● Metric standard definition​ , following a common schema. This schema is described in a
metadata file that defines a set of descriptors used in deploying a component. Examples of
descriptors are: name, dependencies, frequency, resource, output, repository, etc.

● Metric functionality​ , following a common structure. Code, documentation, guidelines, and
examples can define this structure.

Due to the distributed approach of this framework, the components MUST be stored in a Source
Code Manager (e.g. GitHub [GitHub]) that allows an easy and quick access to each component.

The basic component structure SHOULD follow the structure shown in Figure 1.

Figure 1. Basic component structure​ . The schema.xml file describes the metadata information or the Metric standard
definition. Other directories and files define the metric functionality (Code, documentation, guidelines, and examples)

The file schema.xml describes the component metadata therefore this file MUST be included into the
component structure. This metadata contains essential information that will be used to register, install
and execute a component, and collect data from this component. The Figure 2 shows the schema
architecture, and the meanings of each parameter are given in the Table 1.

https://tools.ietf.org/html/rfc2119

Figure 2. Graphical component schema. ​ This graphic shows the component schema hierarchy.

Parameters Description Cardinality Type
Name Component name 1 String
Description Short component explanation 1 String
Authors Authors names separated by commas 0..1 String
Input Input parameters list used in the component

execution.
1..* String

Output Type execution result: number, string or list. 1 String
Dependencies Libraries list necessaries for this component. 0..* String

List
Frequency Time interval to execute a component:

monthly, weekly, daily.
1 String

Resources Resource list representation: database,
software, training, computational.

1..* String
List

Repository Source Manger Code URL where the
component is stored.

1 String

Table 1. Component schema. ​ This table describes in detail, the parameters which defines the components metadata.

3.1.2. Components Registry

The Components Registry contains metadata information for each component that has been
registered. This information MUST be used when a specific component is installed.

The metadata information is described in a common schema consisting of component metadata
(described in section 3.1.1) and additional descriptors, which are essentials for registering a
component. When a component is registered MUST contain this schema definition in its metadata
file. This schema configuration is shown in Figure 3, and theirs parameters definition are described in
Table 2.

Parameters Description Cardinality Type
Name Component name 1 String
Description Short component explanation 1 String
Authors Authors names separated by commas 0..1 String
Input Input parameters list used in the component

execution.
1..* String

Output Type execution result: number, string or list. 1 String
Dependencies Libraries list necessaries for this component. 0..* String List
Frequency Time interval to execute a component: monthly,

weekly, daily.
1 String

Resources Resource list representation: database, software,
training, computational.

1..* String List

Repository Source Manger Code URL where the component is
stored.

1 String

Id Unique identifier, this is composed for the
component name and one exclusive alphanumeric.

1 String

version Component version. 1 String
lastupdated Component last date of upgrade. 1 Date
...

Table 2. Component Registry schema.​ This table describes in detail, the parameters which defines the metadata of
components registered. The orange cells show additionals descriptors as compared to component metadata schema.

Figure 3. Graphical Component Registry schema.​ This graphic shows the component schema hierarchy consisting of
essential component metadata and additional descriptors: id, version, last update.

3.1.3. Data and Monitoring Repository

This Repository collects data from a set of components registered into the Components Repository;
also it makes available these data for different users.

As a part of its configuration, the Data and Monitoring Repository MUST use a schema from where, it
extracts necessary information to install and execute a specific component.

This schema configuration is shown in Figure 4, and theirs parameters definition are described in
Table 3.

Parameters Description Cardinality Type
Id Unique identifier, this is composed for the

component name and one exclusive
number.

1 String

Name Component name. 1 String
Frequency Time interval to execute a component:

monthly, weekly, daily.
1 String

Resource Resource representation: database,
software, training, computational.

1 String

Enable Define if the component functionality is
available into the source code manager.

1 Boolean

Installed Define if the component is installed. 1 Boolean
Input Parameter list for executing a component. 0..* String
Executable File name of the executable component. 1 String
Dependencies Libraries list necessaries for this

component.
0..* String

List
Repository Source Manger Code URL where the

component is stored.
1 String

Table 3. Selected Component schema.​ This table describes in detail, the parameters which defines the metadata of
selected components.

Figure 4. Selected Components schema. ​ This graphic shows the selected components schema hierarchy.

Data from selected components’ execution SHOULD collect and store in a cross-platform
document-oriented database as Mongdb [MongDB]. In this document we explain the details of this
configuration.

The data storage’ structure is shown in the Table 4. The main approach for this configuration is
organize the collected data by grouping ​resource-metric-frequencies​ :

Resource
{

 "​_id​" : assigned by Mongodb
, "​name​" : resource name
,”​type​” : resource type (database, software, training, etc.)
, "​metric​" : metric_id association.
,"​frequencies​" : array with the collected data in each execution and in an specific

 frequency.
}

Table 4. Mongodb record schema. ​ The collected data from component execution is stored following this structure.

Using this organization it is possible build reports as it is showing in the Figure 5. We manipulate data
that we must linkage using a three dimensional format.

Data collected: two dimensional view

 Resources

Database Software Uptime

Metric1

Frequency_1

Frequency_2

....

Metric2

Frequency_a

Frequency_b

…

Metric3

Frequency_i

Frequency_ii

...

Data collected: three dimensional view

Figure 5.​ The graphic shows a two dimensional view on the collected data but in fact three dimensions (shown in cube) are
included.

Using data collected from the selected components execution, stored in the database, it is possible
visualize this information. To achieve this functionality, the Data and Monitoring Repository MUST
use a schema to extract necessary information to make available a list specific components which
are visualized using a GUI (Graphical User Interface).

This schema for available components is shown in Figure 6, and theirs parameters definition are
described in Table 5.

Parameters Description Cardinality Type
Id Unique identifier, this is composed for the

component name and one exclusive
number.

1 String

Name Component name. 1 String
Description Brief description of this component
Detail Describe specific technical information

about one component, api, query, output.
1 Element

Frequency Time interval to execute a component:
monthly, weekly, daily.

1 String

Resource Describe the resource representation:
name and type (software, training,
computational),

1 Element

Repository Source Manger Code URL where the
component is stored.

1 String

Table 5. Available Component schema.​ This table describes in detail, the parameters which defines the metadata of
available components.

Figure 6. Available Components schema. ​ This graphic shows the available components schema hierarchy.

3.2. Metrics Framework Functionality

3.2.1. Component Description

One component MUST describe its metadata information in a XML file, following the specification
explained in the section 3.1.1. (Table 1 and the Figure 2).

The component implementation MUST be developed in NodeJS [NodeJS] technology however, the
component implementation MAY define after the component registry. A component MUST include its
implementation into the Source Content Manager, before its installation and execution.

3.2.2. Component Registry

The registry component follows the next actions (Figure 7):

1. New component MUST provide the metadata URL where it is stored (XML file URL).
2. The XML schema is extracted from this URL.
3. The new component XML schema is compared with the base schema defined into the

Component Registry.
4. If this schema is verified, the unique component ID is generated. The final ID will be

composed of the component name and unique alphanumeric string
(​name-alphanumeric_string​).

5. The new component metadata definition,its ID and other default descriptors, are saved in the
registered components​ XML schema.

6. Finally, the HTML schema is created, adding the new component.

Figure 7. Registry Component Flowchart. ​ This graphic shows the procedure to register a new component.

3.2.3. Monitoring and Collection Data

The Data and Monitoring Repository install and execute a specific group of components. Moreover,
the data from these executions are stored in this repository and then, different users can access to
this repository visualizing particular information.

These are the main tasks performed in this repository:

1. Install components (Figure 8):
a. Evaluate the list of Selected Components (XML file) to install a component.
b. Get the URL from each ​not​ installed​ component with ​enable​ parameter equal ​true​ .
c. Access to Source Code Manager (e.g. GitHub) and bringing the component

implementation.
d. Create a directory component to store the component implementation. This directory

will be called as the component ID.
e. Install component (and its dependencies).
f. If the installation is successful, update into the Selected Components XML schema,

the ​enable​ descriptor with ​true​ value.
g. If not, undo the changes.

Figure 8. Install Component Flowchart. ​ This graphic shows the procedure to install a set of selected component.

2. Run components (Figure 9):
a. Evaluate the list of Selected Components (XML file) to run a component.
b. Select each component with ​installed​ descriptor equal ​true​.
c. Get frequency descriptor format: supported format ​cron-parser​ (Figure 10)
d. Run each component according its execution time interval (frequency):

○ Execution format: ​node executable [param1 param2 … paramN]​ , where:
- executable​: is the filename of the executable component (see

Table 3).
- [param1 param2 … paramN]​: params of execution (see Table 3).

e. Collect the data from every component execution.

Figure 9. Run Component Flowchart. ​ This graphic shows the procedure to execute a set of selected component.

Figure 10. Cron-parse format​ . This format is used to get the execution time interval of one component .

3. Collects data from components execution (Figure 11):

a. Verify if the resource (rosource_name, resource_type and metric_id), from
component execution, exists in the database.

b. If this resource ​is not​ into the database, create a new record following the database
structure (see Table 4).

c. If this resource is into the database, bring it and update this resource with the new
data collected from this execution.

Figure 11. Run Component Flowchart. ​ This graphic shows the procedure to execute a set of selected component.

3.2. Metrics Framework Analysis and Design

Figure 12. ComponentsRegistry Module. Classes and methods responsible for the component registry compose this
module

Figure 13. DataMonitoringRepository Module. Classes and methods responsible for the component installation and
execution compose this module.

Figure 14. Interface Design. Server interactions with different schemas and HTMLs content related to GUI.

4. Example

This section gives an example concerning the definition, registry and monitoring for a Citation
Metric-Component.

Citation Metric​: defines a resource search in papers published in Pubmed Central repository. It
includes all words and numbers in the title, abstract and article body, as well as in table and figure
captions and in the article reference section.This metric can be used to provide evidence of the
impact of the corresponding resource (e.g. database).

Citation Component​: describes the Citation Metric definition (metadata) in a XML schema, and the
Citation Metric implementation. This implementation (code, documentation, examples, etc.)
must be stored into Source Code Manager (e.g. Github).

Component Schema​: This metadata is used for registering the component. The main information
for future execution are defined by:

● Name: used to generate the ID component.
● Input: resource search, in this example a database Uniprot.
● Dependences: libraries necessary to run this component.
● Resource: kind of resource, in this example a database.
● Repository: URL where the component implementation is stored.

<?xml version="1.0" encoding="utf-8"?>
<components_metrics>
 ​ <component>
 <name>​metric-module-citations​</name>
 <description>​Citations in publications​</description>
 <authors>​names of authors​</authors>
 <input>
 <parameter>​swissprot,swiss prot,swiss-prot,UniProtKB,uniprot​</parameter>
 </input>
 <output>​number​</output>
 <dependences>
 <library>​xml2js​</library>
 </dependences>
 <frequency>​monthly​</frequency>
 <resource>
 <rsc>​database​</rsc>
 ​ </resource>

 ​ <repository>​https://github.com/BioPisCO/metrics-module-citation.git​</repository>
 ​ </component>
</components_metrics>

Component Implementation​: composed of code, documentation, examples, guidelines, and other
content, which defined the component functionality. For this example, the Component Citation is
stored into Github source code manager. The code implementation are distributed in ​library and ​test
folder, and in ​citation.js​ file. The metadata schema is described in ​schema.xml​ file.

Component Registry Schema​: metadata from each registered component plus extra descriptors
which manage the components registry. Additional information are defined in:

● Id: component ID (name+unique_alphanumeric).
● Version: alpha, beta, final, etc.
● Lastupdated: date of last upgrade.

This schema is adapted to increase the descriptors according to the model needs.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<components_metrics>
 <component>

<name>​metrics-module-citation​</name>
<description>​Citations in publications​</description>
<authors>​names of authors​</authors>
<input>

 <parameter>​swissprot,swiss prot,swiss-prot,UniProtKB,uniprot​</parameter>
</input>
<output>​number​</output>

<dependencies>
 <library>​xml2js​</library>

</dependencies>
<frequency>​monthly​</frequency>
<resources>

 <rsc>​database​</rsc>
</resources>
<repository>​https://github.com/BioPisCO/metrics-module-citation.git​</repository>
<id>​metrics-module-citation-4ywN_j5H​</id>
<version>​final​</version>
<lastupdate>​12/5/2015​</lastupdate>

 </component>
</components_metrics>

Data and Monitoring Selected Components Schema​: metadata of the selected components with
extra descriptors to manage the monitoring and data collecting. Additional information are defined in:

● Enable: the implementation code is available into source code manager (true or false).
● Installed: if one component and its dependencies have been installed. If the value is true the

component is ready to run.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<selectedcomponents>
 <component>

<id>​metrics-module-citation-4ywN_j5H​</id>
<name>​metrics-module-citation​</name>
<frequency>​minute​</frequency>
<enable>​true​</enable>
<installed>​false​</installed>
<input>

 <parameter>​swissprot,swiss prot,swiss-prot,UniProtKB,uniprot​</parameter>
</input>
<executable>​test/testcitations.js​</executable>
<dependencies>

 <library>​xml2js​</library>
</dependencies>
<repository>​https://github.com/elixirhub/metrics-module-citation.git​</repository>

 </component>
</selectedcomponents>

Data and Monitoring Available Components Schema​: metadata of the available components to
manage the visualization of components in the GUI. This schema is under development.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<availablecomponents>
 <component>

<id>​metrics-module-citation-4ywN_j5H​</id>
<name>​Citation​</name>
<description>​Provides evidence of the resource impact in publications saved in Pubmed
Central (PMC) repository​</description>
<detail>
 <api>​NCBI API (E-utilities)​</api>

<query>​Keyword separated by comma​</query>
<output>​Total publication that includes the keyword​</output>

</detail>

<frequency>​daily​</frequency>
<resource>
 <name>​swissprot,swiss prot,swiss-prot,UniProtKB,uniprot​</name>

<type>​database​</type>
</resource>
<repository>​https://github.com/BioPisCO/metrics-module-citation.git​</repository>

 </component>
</availablecomponents>

Database schema​: example of a database record. The field ​_id is assigned automatically
by the database when the resource is created. Also, when a new record is created, the
fields ​name​, ​type​, ​metric and the result of the component execution, are stored into the
database. In the next iteration, when the component is executed again (in a specific
frequency), the data collected is updated into the frequencies data array.

{
"​_id​" : ObjectId("558c0837fdfb938e74b7d4e9"),
"​name​" : "swissprot,swiss prot,swiss-prot,UniProtKB,uniprot",
"​type​" : "database",
"​metric​" : "metrics-module-citation-4ywN_j5H",
"​frequencies​" : [{ "period" : "minute", "date" : "2015-5-18-15-25-2", "value" : "30411" },
 { "period" : "minute", "date" : "2015-5-18-15-26-2", "value" : "30411" },

{ "period" : "minute", "date" : "2015-5-18-15-27-1", "value" : "30411" },
{ "period" : "minute", "date" : "2015-5-18-15-28-1", "value" : "30411" },
{ "period" : "minute", "date" : "2015-5-18-15-29-1", "value" : "30411" },
{ "period" : "minute", "date" : "2015-5-25-15-1-2", "value" : "30469" },
{ "period" : "minute", "date" : "2015-5-26-10-7-2", "value" : "30501" },
{ "period" : "minute", "date" : "2015-5-26-10-8-1", "value" : "30501" },
{ "period" : "minute", "date" : "2015-5-26-10-9-1", "value" : "30501" }]

}

The database has been created using the from the mongo shell:

[16:11:57][n61806][admin]~$ mongo
MongoDB shell version: 3.0.4
connecting to: test
> use metricsdb
switched to db metricsdb
> db.createCollection(“resources”,{})
{“ok” : 1}
> show dbs
local 0.078GB
metricsdb 0.078GB
> show collections
resources
system.indexes

Components registry​: example of console log for the component registry action. The
Registry must access to component metadata from an URL. For this example (component
citation), the URL used was:
https://raw.githubusercontent.com/BioPisCO/metrics-module-citation/master/schema.xml

[14:30:04][admin]~/ComponentsRegistry$ node registrycomponents.js
schema verified: true
Components have been added to ../schema/registryschema.xml
Updated: ../schema/registryschema.html

Components installation​: example of console log for the component installation.The
parameters of execution are defined in XML schema:

● Component ID: metrics-module-citation-4ywN_j5H.
● Enable: true (implementation is available).
● Dependencies: xml2js (libraries necessaries for this component).
● Repository: ​https://github.com/elixirhub/metrics-module-citation.git​ (URL from where extracts

the component implementation).

[15:06:23][admin]~/DataMonitoringRepository$ node installcomponents.js
https://nodeload.github.com/elixirhub/metrics-module-citation/zip/master
https://github.com/elixirhub/metrics-module-citation.git download into
components/metrics-module-citation-4ywN_j5H completed
installing library xml2js
xml2js@0.4.9 ../node_modules/xml2js
├── sax@0.6.1
└── xmlbuilder@2.6.4 (lodash@3.9.3)
Library xml2js installed
Component metrics-module-citation-4ywN_j5H has been updated in
schema/selectedcomponents.xml

Components monitoring​: example of console log for the component monitoring. The
parameters of execution are defined in XML schema:

● Component ID: metrics-module-citation-4ywN_j5H
● Frequency: minute
● Installed: true (upgrade in the installation execution).
● Parameter: swissprot,swiss prot,swiss-prot,UniProtKB,uniprot
● Executable: test/testcitations.js

[15:24:33][admin]~/DataMonitoringRepository$ node runcomponents.js
components/metrics-module-citation-4ywN_j5H/test/testcitations.js
Frequency: minute (cron format 0 * * * * *)
Resource: "swissprot,swiss prot,swiss-prot,UniProtKB,uniprot"
30411 citations for swissprot,swiss prot,swiss-prot,UniProtKB,uniprot
data save into > citation.txt
component metrics-module-citation-4ywN_j5H was executed
component metrics-module-citation-4ywN_j5H was executed
Connection established to mongodb://localhost:27017/metricsdb
Updated data into the "resources" collection:
{"ok":1,"nModified":1,"n":1}

https://raw.githubusercontent.com/BioPisCO/metrics-module-citation/master/schema.xml
https://github.com/elixirhub/metrics-module-citation.git

User Interface GUI​: example of the graphical interface showing the available
components. These components are available to make different graphs from the data
stored in the database.

5. References
[GitHub]

https://​github​.com/

[MongoDB]

​https://www.mongodb.org/

[NodeJS]

https://nodejs.org/

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",​ ​BCP 14​, ​RFC
2119​, March 1997.

https://github.com/
https://github.com/
https://github.com/
https://www.mongodb.org/
https://nodejs.org/
https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

