

**Figure S1.** Environmental conditions in the tanks at the Hawai'i Institute of Marine Biology used to house the corals collected for this study. Daily temperature and light (PAR) levels were measured in the tank where corals were held prior to spawning (frequency = min). The black symbols indicate temperature and the gray symbols indicate irradiance. Light data are not available from 6/19 to 6/24 due to a logger battery malfunction.



**Figure S2.** Results of the NeighborNet analysis of the MTC data with the phi test result shown. The colony number demarcation and support values are the same as in Figure 2C.



Figure S3. Mapping of Mcap2.bundle9 genomic data to a polymorphic region in mtDNA near the MTC region showing the presence of a second region with SNPs/indels that distinguish the two identified mtDNA haplotypes in *M. capitata*. This insertion also occurs at a frequency of ca. 6% (see Table S3).



**Figure S4.** Mapping data for single-copy genic regions in *M. capitata*. A) Mapping of genomic reads from the Mcap2.bundle9 single bundle sperm data to the 5' half of the Pax-C intron. The single SNP is shown with the black column. B) Mapping of genomic reads from the single bundle sperm data to the predicted gene model the encoding microtubule-associated protein 1A/1B light chain 3C-like sequence. C) Mapping of genomic reads from the single bundle sperm data to the predicted gene model of the Myb-like protein X sequence. In both genomic mappings, the exon and intron regions are shown with the yellow rectangles connected by the thin yellow lines with the direction of transcription marked with the arrowhead. The SNPs/indels are marked with the red and blue vertical lines with only one being shared by multiple reads and therefore being counted in this analysis. In both mapping results, green, red, and blue lines designate forward, reverse, and paired-end reads, respectively.



**Figure S5.** Mapping of Mcap2.bundle9 genomic data to the Pax-C intron sequence. Note the single unambiguous G to T polymorphism at the position shown in Figure S2A. **Table S1.** Naming scheme used for the *Montipora capitata* samples used in this study and the studied genes. The row highlighted in yellow was the single sperm bundle sample used for the draft genome assembly.

|                   |                      |                            |      |          |     |       | 8 single copy genes derived | 9 single copy genes derived |
|-------------------|----------------------|----------------------------|------|----------|-----|-------|-----------------------------|-----------------------------|
| Sample Name       | Type of Sperm Tissue | <b>Collection Location</b> | ITS1 | Seq Prep | мтс | Pax-C | from genome data            | from transcriptome data     |
| Mcap1.col.c1      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.co1.c2      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c3      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c4      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c5      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c6      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c7      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c8      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap1.col.c9      | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap1.col.c10     | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap2.col.c1      | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap2.col.c2      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.col.c3      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.col.c4      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.col.c5      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.col.c6      | Multiple Bundles     | Reef 51                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.col.c7      | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap2.col.c8      | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap2.col.c9      | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap2.col.c10     | Multiple Bundles     | Reef 51                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c1      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c2      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c3      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c4      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c5      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c6      | Multiple Bundles     | Reef 19                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap3.col.c7      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c8      | Multiple Bundles     | Reef 19                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap3.col.c9      | Multiple Bundles     | Reef 19                    | X    | Clone    | X   | NA    | NA                          | NA                          |
| Mcap3.col.c10     | Multiple Bundles     | Reef 19                    | X    | Clone    | Х   | NA    | NA                          | NA                          |
| Mcap2.bundle1.pcr | Single bundle        | Reef 51                    | X    | Amplicon | NA  | NA    | NA                          | NA                          |
| Mcap2.bundle2.pcr | Single bundle        | Reef 51                    | X    | Amplicon | NA  | NA    | NA                          | NA                          |
| Mcap2.bundle3.pcr | Single bundle        | Reef 51                    | X    | Amplicon | NA  | NA    | NA                          | NA                          |
| Mcap2.bundle4.pcr | Single bundle        | Reef 51                    | Х    | Amplicon | NA  | NA    | NA                          | NA                          |

| Mcap2.bundle5.pcr  | Single bundle    | Reef 51 | X  | Amplicon | NA | NA | NA | NA |
|--------------------|------------------|---------|----|----------|----|----|----|----|
| Mcap2.bundle6.pcr  | Single bundle    | Reef 51 | Х  | Amplicon | NA | NA | NA | NA |
| Mcap2.bundle7.pcr  | Single bundle    | Reef 51 | Х  | Amplicon | NA | NA | NA | NA |
| Mcap2.bundle8.pcr  | Single bundle    | Reef 51 | Х  | Amplicon | NA | NA | NA | NA |
| Mcap2.bundle9.pcr  | Single bundle    | Reef 51 | Х  | Amplicon | Х  | NA | NA | NA |
| Mcap2.bundle10.pcr | Single bundle    | Reef 51 | Х  | Amplicon | NA | NA | NA | NA |
| Mcap1              | Multiple Bundles | Reef 51 | NA | Amplicon | NA | Х  | Х  | NA |
| Mcap2              | Multiple Bundles | Reef 51 | NA | Amplicon | NA | Х  | Х  | NA |
| Mcap3              | Multiple Bundles | Reef 19 | NA | Amplicon | NA | Х  | Х  | NA |
| Mcap4              | Multiple Bundles | Reef 8  | NA | Amplicon | NA | Х  | NA | NA |
| Mcap5              | Multiple Bundles | Reef 8  | NA | Amplicon | NA | Х  | NA | NA |
| Mcap1-5 combined   |                  |         |    |          |    |    |    |    |
| RNA assembly       | Multiple Bundles | НІМВ    | NA | N/A      | NA | NA | Х  | Х  |

| Species                   | Data type     | Reference |
|---------------------------|---------------|-----------|
| Nematostella vectensis    | Genome        | [1]       |
| Aiptasia pallida          | Genome        | [2]       |
| Anthopleura elegantissima | Transcriptome | [3]       |
| Acropora digitifera       | Genome        | [4]       |
| Porites australiensis     | Transcriptome | [3]       |
| Stylophora pistilata      | Transcriptome | [3]       |
| Fungia scutaria           | Transcriptome | [3]       |

**Table S2.** Genome and transcriptome data from seven anthozoan species that were used to identify orthologous gene families

- 1. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. *Science*. **317**:86-94.
- Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR (2015). The genome of *Aiptasia*, a sea anemone model for coral symbiosis. *Proc Natl Acad Sci* USA. 112:11893-8.
- 3. Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber AP, Weis V, Zelzion E, Zoccola D, Falkowski PG (2016). Comparative genomics explains the evolutionary success of reef-forming corals. *eLife.* 5: e13288.
- 4. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011). Using the *Acropora digitifera* genome to understand coral responses to environmental change. *Nature*. **476**:320-3

**Table S3.** The 8 genome-derived single-copy genes that were used to map genomic reads from the single sperm bundle DNA library. The annotation of each gene and the query coverage of the target protein (in amino acids) is shown as is the query coverage for the corresponding cDNA used to identify the genomic contigs. The number and frequency of SNPs/indels is also presented

| <i>M. capitata</i><br>genomic<br>contig | Query<br>length | Annotation in Acropora digitifera                              | Target<br>length | Query<br>start | Query<br>end | Transcript<br>start | Transcript<br>end | Comments                 | Number of<br>SNPs/indels | Frequency |
|-----------------------------------------|-----------------|----------------------------------------------------------------|------------------|----------------|--------------|---------------------|-------------------|--------------------------|--------------------------|-----------|
| 11687                                   | 151             | cilia- and flagella-associated protein 20                      | 193              | 1              | 151          | 5                   | 155               | missing start and end    | 0                        | -         |
| 180277                                  | 173             | putative exosome complex component rrp40                       | 240              | 1              | 173          | 1                   | 173               | missing end              | 1                        | 52.38     |
| 437697                                  | 76              | myb-like protein X                                             | 400              | 1              | 76           | 1                   | 76                | missing end              | 0                        | -         |
| 576520                                  | 118             | protein FAM166B-like                                           | 300              | 1              | 118          | 189                 | 300               | missing start            | 0                        | -         |
| 516630                                  | 72              | microtubule-associated proteins<br>1A/1B light chain 3C-like   | 126              | 1              | 72           | 1                   | 72                | missing end              | 1                        | 47.37     |
| 319611                                  | 390             | synaptotagmin-5-like                                           | 571              | 1              | 390          | 42                  | 432               | missing start and end    | 0                        | -         |
| 201880                                  | 270             | paxillin-like                                                  | 497              | 1              | 270          | 143                 | 409               | missing start<br>and end | 1                        | 41.95     |
| 401915                                  | 233             | pyruvate dehydrogenase protein X component, mitochondrial-like | 491              | 14             | 230          | 253                 | 471               | missing start<br>and end | 0                        | -         |

**Table S4.** List of polymorphic regions found in the assembly of *M. capitata* mtDNA that represents a consensus of at least two different haplotyptes present in the DNA, with the dominant genome comprising the reference. The SNP/indel data were generated by mapping genomic reads to this reference genome.

| Length | Reference | Allele            | Count | Coverage | Frequency   | Forward/<br>reverse<br>balance | Average<br>quality |
|--------|-----------|-------------------|-------|----------|-------------|--------------------------------|--------------------|
| 13     | -         | GGGCTC<br>ATCCCGG | 21    | 364      | 5.769230769 | 0.272727273                    | 37.2265625         |
| 1      | С         | А                 | 26    | 343      | 7.580174927 | 0.448275862                    | 37.48              |
| 1      | А         | Т                 | 25    | 387      | 6.45994832  | 0.5                            | 36.95833333        |
| 3      | GGC       | -                 | 25    | 381      | 6.56167979  | 0.481481481                    | 36.66666667        |
| 1      | G         | -                 | 25    | 373      | 6.702412869 | 0.481481481                    | 35.25              |
| 8      | TTAATGAA  | -                 | 25    | 376      | 6.64893617  | 0.481481481                    | 34.375             |
| 1      | G         | Т                 | 25    | 357      | 7.00280112  | 0.481481481                    | 37.5               |
| 1      | G         | А                 | 21    | 234      | 8.974358974 | 0.391304348                    | 36                 |
| 1      | G         | А                 | 37    | 392      | 9.43877551  | 0.357142857                    | 37.30555556        |
| 1      | С         | А                 | 39    | 389      | 10.02570694 | 0.363636364                    | 37.26315789        |
| 1      | А         | Т                 | 44    | 445      | 9.887640449 | 0.44444444                     | 36.46511628        |
| 1      | С         | Т                 | 49    | 464      | 10.56034483 | 0.393442623                    | 36.64583333        |
| 1      | С         | А                 | 50    | 460      | 10.86956522 | 0.403225806                    | 37.57142857        |
| 1      | С         | Т                 | 44    | 476      | 9.243697479 | 0.431034483                    | 37.25581395        |
| 1      | Т         | С                 | 26    | 427      | 6.088992974 | 0.275862069                    | 37.68              |
| 1      | Т         | А                 | 42    | 403      | 10.42183623 | 0.490196078                    | 37.63414634        |
| 1      | С         | G                 | 10    | 199      | 5.025125628 | 0.384615385                    | 36.1               |
| 1      | G         | С                 | 25    | 274      | 9.124087591 | 0.266666667                    | 37.45833333        |
| 1      | G         | А                 | 49    | 480      | 10.20833333 | 0.482758621                    | 36.04166667        |
| 1      | G         | А                 | 53    | 477      | 11.11111111 | 0.383333333                    | 36.94230769        |
| 1      | G         | -                 | 29    | 473      | 6.131078224 | 0.484848485                    | 34.27586207        |
| 1      | G         | А                 | 25    | 468      | 5.341880342 | 0.482758621                    | 36.28              |
| 1      | А         | С                 | 27    | 269      | 10.03717472 | 0.37037037                     | 37.26923077        |
| 1      | G         | А                 | 15    | 290      | 5.172413793 | 0.44444444                     | 36.28571429        |
| 1      | А         | G                 | 36    | 344      | 10.46511628 | 0.390243902                    | 36.54285714        |
| 1      | G         | А                 | 46    | 415      | 11.08433735 | 0.428571429                    | 37.26666667        |
| 1      | С         | Т                 | 43    | 419      | 10.26252983 | 0.411764706                    | 37                 |
| 1      | А         | Т                 | 41    | 423      | 9.692671395 | 0.340909091                    | 37.125             |
| 1      | С         | Т                 | 44    | 449      | 9.799554566 | 0.3125                         | 37.30232558        |
| 1      | С         | А                 | 43    | 417      | 10.3117506  | 0.3125                         | 36.42857143        |
| 3      | GTT       | -                 | 53    | 466      | 11.37339056 | 0.465517241                    | 35.05769231        |
| 1      | Т         | G                 | 55    | 458      | 12.00873362 | 0.459016393                    | 37.42592593        |
| 1      | G         | С                 | 49    | 465      | 10.53763441 | 0.396551724                    | 36.25              |
| 1      | G         | А                 | 48    | 470      | 10.21276596 | 0.320754717                    | 36.87234043        |
| 1      | С         | G                 | 29    | 456      | 6.359649123 | 0.4                            | 36.96428571        |

| 1 | А    | Т        | 42 | 433 | 9.699769053 | 0.367346939  | 37.09756098 |
|---|------|----------|----|-----|-------------|--------------|-------------|
| 1 | G    | Т        | 11 | 77  | 14.28571429 | 0.416666667  | 36.9        |
| 1 | С    | Т        | 8  | 121 | 6.611570248 | 0.4          | 37.85714286 |
| 1 | С    | Т        | 8  | 135 | 5.925925926 | 0.4          | 37.85714286 |
| 1 | С    | А        | 33 | 492 | 6.707317073 | 0.41025641   | 37.09375    |
| 1 | G    | А        | 22 | 438 | 5.02283105  | 0.407407407  | 36.95454545 |
| 1 | G    | А        | 26 | 441 | 5.89569161  | 0.5          | 37.44       |
| 2 | TT   | GG       | 27 | 453 | 5.960264901 | 0.419354839  | 37.72       |
| 1 | G    | А        | 27 | 434 | 6.221198157 | 0.4333333333 | 36.80769231 |
| 1 | G    | Т        | 43 | 411 | 10.4622871  | 0.403846154  | 37.0952381  |
| 1 | G    | А        | 22 | 393 | 5.597964377 | 0.3333333333 | 37.76190476 |
| 1 | Т    | С        | 8  | 106 | 7.547169811 | 0.222222222  | 36          |
| 1 | G    | С        | 26 | 449 | 5.79064588  | 0.464285714  | 36.42307692 |
| 1 | Т    | -        | 26 | 428 | 6.074766355 | 0.423076923  | 34.07692308 |
| 1 | G    | А        | 21 | 385 | 5.454545455 | 0.3333333333 | 36.19047619 |
| 1 | G    | А        | 18 | 274 | 6.569343066 | 0.27777778   | 36.83333333 |
| 1 | Т    | С        | 11 | 139 | 7.913669065 | 0.363636364  | 36.72727273 |
| 1 | G    | С        | 20 | 397 | 5.037783375 | 0.5          | 37.65       |
| 1 | С    | А        | 23 | 381 | 6.036745407 | 0.482758621  | 37.34782609 |
| 1 | С    | Т        | 21 | 404 | 5.198019802 | 0.4          | 37.85714286 |
| 1 | Т    | С        | 21 | 393 | 5.34351145  | 0.363636364  | 37.14285714 |
| 1 | Т    | -        | 19 | 377 | 5.039787798 | 0.407407407  | 35.42105263 |
| 1 | G    | Т        | 23 | 447 | 5.14541387  | 0.464285714  | 37.13043478 |
| 1 | С    | А        | 28 | 467 | 5.995717345 | 0.482758621  | 37.67857143 |
| 1 | С    | Т        | 9  | 112 | 8.035714286 | 0.222222222  | 36          |
| 1 | А    | Т        | 11 | 169 | 6.50887574  | 0.333333333  | 37.36363636 |
| 1 | А    | Т        | 20 | 271 | 7.380073801 | 0.285714286  | 37.75       |
| 1 | Т    | А        | 19 | 257 | 7.392996109 | 0.3          | 37.63157895 |
| 1 | А    | G        | 7  | 75  | 9.333333333 | 0.375        | 37.5        |
| 8 | -    | GCTCGTAA | 8  | 99  | 8.080808081 | 0.333333333  | 37.07407407 |
| 1 | С    | G        | 11 | 119 | 9.243697479 | 0.181818182  | 34.63636364 |
| 1 | А    | -        | 11 | 134 | 8.208955224 | 0            | 24.36363636 |
| 1 | А    | G        | 10 | 153 | 6.535947712 | 0.1          | 36.9        |
| 1 | А    | -        | 46 | 153 | 30.06535948 | 0.108695652  | 34.67391304 |
| 2 | TT   | GG       | 72 | 184 | 39.13043478 | 0.125        | 36.7146265  |
| 1 | -    | А        | 18 | 192 | 9.375       | 0.368421053  | 36.52941176 |
| 5 | -    | AGGGG    | 30 | 192 | 15.625      | 0.066666667  | 37.15833503 |
| 6 | -    | AGGGGG   | 28 | 192 | 14.58333333 | 0.071428571  | 37.48502994 |
| 1 | G    | А        | 16 | 191 | 8.376963351 | 0            | 36.0625     |
| 4 | TCTT | GGGG     | 20 | 235 | 8.510638298 | 0.095238095  | 36.04636678 |
| 1 | G    | Α        | 24 | 384 | 6.25        | 0.4          | 36.82608696 |
| 1 | A    | Т        | 24 | 383 | 6.266318538 | 0.28         | 37.95652174 |
| 1 | G    | Α        | 20 | 396 | 5.050505051 | 0.15         | 37.52631579 |

| 1  | А  | G                   | 19 | 324 | 5.864197531 | 0.285714286 | 36.84210526 |
|----|----|---------------------|----|-----|-------------|-------------|-------------|
| 1  | Т  | -                   | 22 | 383 | 5.744125326 | 0.44        | 34.45454545 |
| 2  | TT | -                   | 20 | 383 | 5.221932115 | 0.454545455 | 34.65       |
| 1  | Т  | С                   | 25 | 354 | 7.062146893 | 0.44444444  | 35.32       |
| 1  | G  | Т                   | 28 | 314 | 8.917197452 | 0.433333333 | 37.14285714 |
| 1  | С  | Т                   | 29 | 334 | 8.682634731 | 0.424242424 | 37.20689655 |
| 1  | G  | Т                   | 30 | 343 | 8.746355685 | 0.424242424 | 36.13333333 |
| 1  | А  | Т                   | 28 | 350 | 8           | 0.46875     | 37.03571429 |
| 1  | Т  | А                   | 26 | 383 | 6.788511749 | 0.433333333 | 36.46153846 |
| 1  | С  | Т                   | 38 | 470 | 8.085106383 | 0.380952381 | 37.21052632 |
| 1  | G  | С                   | 38 | 392 | 9.693877551 | 0.333333333 | 35.42105263 |
| 1  | Т  | А                   | 38 | 381 | 9.973753281 | 0.307692308 | 36.55263158 |
| 1  | G  | А                   | 45 | 412 | 10.9223301  | 0.387755102 | 37.22222222 |
| 1  | А  | С                   | 36 | 440 | 8.181818182 | 0.4         | 37.08333333 |
| 1  | С  | А                   | 28 | 400 | 7           | 0.366666667 | 36.85714286 |
| 2  | -  | TC                  | 24 | 393 | 6.106870229 | 0.384615385 | 37.06363636 |
| 1  | С  | Т                   | 43 | 404 | 10.64356436 | 0.413043478 | 35.23255814 |
| 1  | Т  | С                   | 37 | 430 | 8.604651163 | 0.365853659 | 37.32432432 |
| 1  | А  | Т                   | 43 | 444 | 9.684684685 | 0.5         | 37.27906977 |
| 1  | Т  | С                   | 40 | 465 | 8.602150538 | 0.47826087  | 37          |
| 1  | Т  | С                   | 28 | 353 | 7.932011331 | 0.433333333 | 37.57142857 |
| 1  | G  | -                   | 13 | 32  | 40.625      | 0.5         | 33          |
| 1  | С  | А                   | 5  | 42  | 11.9047619  | 0           | 34.4        |
| 1  | Т  | G                   | 23 | 183 | 12.56830601 | 0.391304348 | 36.65217391 |
| 1  | -  | Т                   | 13 | 191 | 6.806282723 | 0.384615385 | 38          |
| 1  | Т  | А                   | 23 | 191 | 12.04188482 | 0.391304348 | 37.17391304 |
| 1  | А  | G                   | 13 | 187 | 6.951871658 | 0.384615385 | 37.38461538 |
| 15 | -  | ATTAAATT<br>TTGAGGT | 13 | 159 | 8.176100629 | 0.4         | 37.57368421 |
| 1  | G  | Α                   | 26 | 322 | 8.074534161 | 0.37037037  | 36.80769231 |
| 1  | G  | А                   | 27 | 369 | 7.317073171 | 0.333333333 | 36.85185185 |
| 1  | G  | А                   | 26 | 360 | 7.222222222 | 0.307692308 | 37.26923077 |