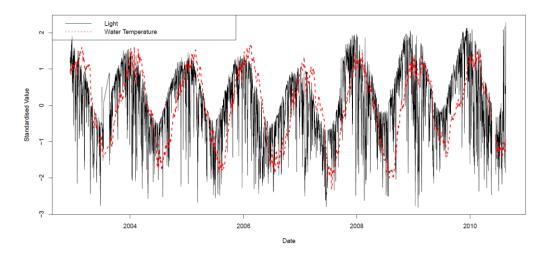
Supplementary Material

1

2

6


9

10

12

I. Correlation and time lag of water temperature at 6m and light irradiance

- 3 Figure below shows the correlation between water temperature at 6m and light irradiance at the
- 4 surface from January 2003 to June 2010 illustrating the clear time lag between the two factors as
- 5 temperature consistently lags.

7 II. Multistate Markov model

8 Assume a finite number of state, $S = \{1, ..., R\}$ the transition between the states is governed

by a continuous time stochastic process x(t) which has value in S. Let $H_{t_1}^-$ denote the history

of the stochastic process up to time t_1 , the probability of transitioning from state r to state s is

11 $p_{rs}(t_1, t_2) = p(x(t_2) = s | x(t_1) = r, H_t^-)$. The transitional probability, $p_{rs}(t_1, t_2)$, is governed by

the transition intensity, q_{rs} which is the instantaneous hazardous rate of moving from state r

13 to state s is

$$q_{rs}(\delta t, H_{t_1}^-) = \lim_{\delta t \to 0} \frac{p(x(t_1 + \delta t) = s | x(t_1) = r, H_t^-)}{\delta t}$$

14 The effect of covariates are then included in the model through the intensity matrix, i.e

$$\mathbf{q}_{\mathrm{rs}}(\delta t,\mathbf{H}_{\mathrm{t}_{1}}^{-})=\mathbf{q}_{\mathrm{rs}}^{0}(t,H_{t}^{-})\mathrm{exp}(\beta_{rs}^{T}\mathbf{z})$$

where $q_{rs}^0(t, H_t^-)$ is the baseline intensity at time t, **z** is the covariate vector and β_{rs} is the

effect of covariates for transition from state r to s.

- 18 Different assumptions can be made about the dependency between transition rate and time,
- 19 Meira-Machado et al. (2008) has detailed description of different assumptions and associated
- 20 models.