| 1      | Supporting Materials for                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| 2      |                                                                                                                                  |
| 3<br>4 | Stochastic extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire |
| 5      |                                                                                                                                  |
| 6      | Sang-Hoon Lee, Jackson W Sorensen, Keara L Grady, Tammy C Tobin, and Ashley Shade                                                |

Supporting Figure 1. PCoA showing the variability among technical replicates. Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil, and these sequences were subsequently pooled into one aggregate set of sequences to achieve deep coverage of the community within each soil. Error bars are standard deviation around the mean weighted UniFrac distance among technical replicates, each subsampled to an even 53,000 sequences per replicate.



PCoA1: 76.3% var. explained

- 14 Supporting Figure 2. Quantification of (A) 16S rRNA copies and (B) cell counts in fire-
- 15 affected, recovered, and reference soils. 16S rRNA copies were assessed using quantitative
- 16 PCR, and cell counts were assessed using cell separation from soil, staining and microscope
- 17 imaging.



- 20 Supporting Figure 3. Centralia 16S rRNA amplicon sequencing effort assessed by
- 21 subsampling/rarefaction of (A) richness and (B) Faith's phylogenetic diversity with increasing
- total number of sequences.



Supporting Figure 4. Divergences in fire-affected soils are not well explained by temperature. (A) Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic bacterial and archaeal community structure in fire-affected soils. The strength of statistically significant (p < 0.10) explanatory variables are shown with blue arrows. (B) Constrained analysis based on weighted UniFrac distances, where the explanatory value of temperature is removed from the analysis to understand the influence of the remaining explanatory variables.



3132

Supporting Figure 5. Neutral models of community assembly (abundance v. occurrence) for (A) the total community ("All", n= 18), (B) fire-affected soils ("Fire\_Affected", n=9) and (C) recovered soils ("Recovered" n=7). Red symbols show OTUs that had higher abundance than their prediction, and blue symbols show OTUs that had lower abundance than their prediction. The thick yellow line is the neutral model prediction, and the thin yellow lines show a 95% confidence interval around the prediction.

39

(A) All

(B) Fire\_Affected



40

(C) Recovered



## 42 **Supporting Table 1.** Primers used in this study.

| Primer<br>name | sequence (5' - 3')   | Target | target<br>site | Product<br>size<br>(bp) | Tm   | Reference        |  |  |  |
|----------------|----------------------|--------|----------------|-------------------------|------|------------------|--|--|--|
| 515F           | GTGCCAGCMGCCGCGGTAA  | 16S    | 515-<br>534    | 201                     | 69.5 | Caporaso et al., |  |  |  |
| 806R           | GGACTACHVGGGTWTCTAAT | V4     | 787-<br>806    | 291                     | 45.1 | ISME J. 2012     |  |  |  |

**Table 1.** Primer set used for this study.

43

Supporting Table 2. Mean and standard deviation ("sd") phylogenetic diversity and number of OTUs ("richness) across technical sequencing replicates for the un-collapsed dataset (rarefied to 53,000 sequences per sample). Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil, and, after calculating the technical variability, these sequences were pooled into one aggregate set of sequences to achieve deep coverage of the community within each soil.

| SampleID | PD_mean | PD_sd | Richness_mean | Richness_sd |
|----------|---------|-------|---------------|-------------|
| C01      | 393.96  | 16.22 | 4073.67       | 55.77       |
| C02      | 392.48  | 9.42  | 3805.00       | 48.50       |
| C03      | 403.12  | 15.25 | 4498.67       | 39.72       |
| C04      | 374.95  | 6.51  | 4420.33       | 89.51       |
| C05      | 405.05  | 14.17 | 4389.33       | 109.25      |
| C06      | 332.89  | 13.26 | 3718.67       | 117.33      |
| C07      | 371.50  | 7.80  | 4253.00       | 67.01       |
| C08      | 525.93  | 5.37  | 6011.67       | 191.04      |
| C09      | 312.71  | 32.40 | 2328.33       | 352.23      |
| C10      | 267.32  | 27.06 | 2128.00       | 225.08      |
| C11      | 343.84  | 12.26 | 3886.67       | 81.56       |
| C12      | 249.92  | 29.65 | 2106.67       | 280.73      |
| C13      | 316.18  | 58.27 | 2471.00       | 816.28      |
| C14      | 307.29  | 16.47 | 2688.67       | 232.20      |
| C15      | 330.40  | 38.06 | 3011.67       | 435.15      |
| C16      | 356.85  | 12.24 | 3546.33       | 83.93       |
| C17      | 506.13  | 19.77 | 5724.00       | 179.43      |
| C18      | 392.64  | 13.98 | 4210.67       | 105.61      |

51

53 Supporting Table 3. Percent variation explained for PCoA axes 1 and 2 for weighted and

54 unweighted UniFrac, Sorensen-dice, and Bray-Curtis distances/dissimilarities. Weighted

55 UniFrac was chosen because it was most informative in explaining the variance along the first

56 two axes.

|                             | PCoA1 | PCoA2 |
|-----------------------------|-------|-------|
| Weighted UniFrac            | 77.1  | 12.7  |
| Normalized Weighted Unifrac | 74.6  | 10.9  |
| Unweighted UniFrac          | 18.3  | 13.6  |
| Sorensen-dice               | 20.1  | 15.2  |
| Bray-Curtis                 | 23.9  | 13.7  |

57

- 59 Supporting Table 4. Explanatory value of soil contextual data to changes in Centralia soil
- 60 community structure along PCoA axes for the all soils. Factors significant at p < 0.10 are in
- 61 bold.

|                                                                     | PCoA1  | PCoA2  | R2    | P<br>value |    |
|---------------------------------------------------------------------|--------|--------|-------|------------|----|
| % explanation                                                       | 77.1   | 12.3   |       |            |    |
| Soil Temperature                                                    | 0.968  | -0.252 | 0.787 | 0.002      | ** |
| NO₃N (ppm)                                                          | 0.226  | -0.974 | 0.290 | 0.067      |    |
| рН                                                                  | 0.185  | 0.983  | 0.649 | 0.008      | ** |
| K (ppm)                                                             | -0.813 | 0.582  | 0.006 | 0.946      |    |
| Mg (ppm)                                                            | -0.148 | 0.989  | 0.123 | 0.374      |    |
| Organic matter                                                      | 0.812  | -0.583 | 0.002 | 0.984      |    |
| NH₄N (ppm)                                                          | 0.194  | -0.981 | 0.287 | 0.088      |    |
| SulfateSulfur (ppm)                                                 | 0.121  | -0.993 | 0.116 | 0.372      |    |
| Ca (ppm)                                                            | 0.182  | 0.983  | 0.529 | 0.022      | *  |
| Fe (ppm)                                                            | 0.253  | -0.967 | 0.271 | 0.094      |    |
| Fire history                                                        | -0.605 | 0.797  | 0.253 | 0.169      |    |
| As (ppm)                                                            | -0.014 | -1.000 | 0.124 | 0.404      |    |
| P (ppm)                                                             | 0.435  | -0.900 | 0.093 | 0.462      |    |
| Soil Moisture (%)                                                   | 0.263  | -0.965 | 0.405 | 0.035      | *  |
| Significant codes: '***' 0.001; '**' 0.01; '*' 0.05; '.' 0.1; ' ' 1 |        |        |       |            |    |
| Number of permutations: 99                                          | 9      |        |       |            |    |
|                                                                     |        |        |       |            |    |

- 64 **Supporting Table 5**. Explanatory value of soil contextual data to changes in Centralia soil
- 65 community structure along PCoA axes for the fire-affected soils. Factors significant at p < 0.10
- 66 are in bold.

|                                | PCoA1                                                               | PCoA2  | R2    | P<br>value |    |  |
|--------------------------------|---------------------------------------------------------------------|--------|-------|------------|----|--|
| % explanation                  | 70.9                                                                | 22.0   |       |            |    |  |
| SoilTemperature_to10cm         | 0.765                                                               | -0.644 | 0.578 | 0.088      |    |  |
| NO3N_ppm                       | -0.002                                                              | -1.000 | 0.328 | 0.236      |    |  |
| рН                             | 0.490                                                               | 0.872  | 0.823 | 0.002      | ** |  |
| K_ppm                          | 0.282                                                               | -0.959 | 0.232 | 0.429      |    |  |
| Mg_ppm                         | 0.767                                                               | 0.641  | 0.604 | 0.058      |    |  |
| OrganicMatter_500              | 0.407                                                               | -0.913 | 0.218 | 0.498      |    |  |
| NH4N_ppm                       | -0.021                                                              | -1.000 | 0.342 | 0.155      |    |  |
| SulfateSulfur_ppm              | -0.216                                                              | -0.976 | 0.118 | 0.759      |    |  |
| Ca_ppm                         | 0.613                                                               | 0.790  | 0.694 | 0.015      | *  |  |
| Fe_ppm                         | 0.044                                                               | -0.999 | 0.355 | 0.204      |    |  |
| As_ppm                         | -0.492                                                              | -0.871 | 0.388 | 0.228      |    |  |
| P_ppm                          | 0.142                                                               | -0.990 | 0.238 | 0.453      |    |  |
| SoilMoisture_Per               | -0.023                                                              | -1.000 | 0.460 | 0.143      |    |  |
| Fire_history                   | 0.742                                                               | -0.670 | 0.136 | 0.637      |    |  |
| Significant codes: '***' 0.001 | Significant codes: '***' 0.001; '**' 0.01; '*' 0.05; '.' 0.1; ' ' 1 |        |       |            |    |  |
| Number of permutations: 99     | 9                                                                   |        |       |            |    |  |
|                                |                                                                     |        |       |            |    |  |

68

- 70 **Supporting Table 6**. Explanatory value of soil contextual data to changes in Centralia soil
- 71 community structure along the constrained PCoA axes for the fire-affected soils, after removing 72 the influence of temperature. Factors cignificant at a < 0.10 are in hold.
- 72 the influence of temperature. Factors significant at p < 0.10 are in bold.
- 73

|                                                                     | CAP_A1 | CAP_A2 | R2    | P<br>value |   |  |
|---------------------------------------------------------------------|--------|--------|-------|------------|---|--|
| % explanation                                                       | 64.2   | 25.9   |       |            |   |  |
| SoilTemperature_to10cm                                              | 1.000  | 0.000  | 0.000 | 1.000      |   |  |
| NO3N_ppm                                                            | -0.973 | -0.233 | 0.354 | 0.285      |   |  |
| рН                                                                  | 0.771  | 0.637  | 0.729 | 0.014      | * |  |
| K_ppm                                                               | -0.416 | -0.909 | 0.093 | 0.730      |   |  |
| Mg_ppm                                                              | 0.641  | 0.767  | 0.370 | 0.247      |   |  |
| OrganicMatter_500                                                   | 0.070  | -0.997 | 0.128 | 0.613      |   |  |
| NH4N_ppm                                                            | -0.962 | -0.273 | 0.367 | 0.240      |   |  |
| SulfateSulfur_ppm                                                   | -0.988 | 0.154  | 0.234 | 0.446      |   |  |
| Ca_ppm                                                              | 0.652  | 0.759  | 0.551 | 0.092      | - |  |
| Fe_ppm                                                              | -0.862 | -0.508 | 0.396 | 0.355      |   |  |
| As_ppm                                                              | -0.948 | -0.317 | 0.378 | 0.216      |   |  |
| P_ppm                                                               | -0.132 | -0.991 | 0.287 | 0.350      |   |  |
| SoilMoisture_Per                                                    | -0.813 | -0.583 | 0.419 | 0.203      |   |  |
| Fire_history                                                        | 0.636  | -0.771 | 0.276 | 0.375      |   |  |
| Significant codes: '***' 0.001; '**' 0.01; '*' 0.05; '.' 0.1; ' ' 1 |        |        |       |            |   |  |
| Number of permutations: 999                                         |        |        |       |            |   |  |

## /6 77 Supporting

## **Supporting Table 7**. Parameters and fits of neutral models as per Burns et al. 2015.

| Model<br>parameter | all       | Fire-affected | Recovered |
|--------------------|-----------|---------------|-----------|
| m                  | 0.04      | 0.08          | 0.10      |
| m.ci               | 0.00      | 0.00          | 0.00      |
| m.mle              | 0.04      | 0.08          | 0.10      |
| maxLL              | -5838.12  | 1187.68       | -2735.42  |
| binoLL             | 475.69    | 1162.47       | -143.93   |
| poisLL             | 475.67    | 1162.46       | -143.94   |
| Rsqr               | 0.45      | 0.12          | 0.53      |
| Rsqr.bino          | -1.19     | -0.86         | -0.47     |
| Rsqr.pois          | -1.19     | -0.86         | -0.47     |
| RMSE               | 0.20      | 0.26          | 0.21      |
| RMSE.bino          | 0.39      | 0.38          | 0.37      |
| RMSE.pois          | 0.39      | 0.38          | 0.37      |
| AIC                | -11672.24 | 2379.36       | -5466.85  |
| BIC                | -11655.75 | 2394.86       | -5451.16  |
| AIC.bino           | 955.38    | 2328.94       | -283.86   |
| BIC.bino           | 971.88    | 2344.43       | -268.17   |
| AIC.pois           | 955.35    | 2328.92       | -283.88   |
| BIC.pois           | 971.84    | 2344.42       | -268.19   |
| Ν                  | 321000.00 | 321000.00     | 321000.00 |
| Samples            | 18.00     | 9.00          | 7.00      |
| Richness           | 28220.00  | 17097.00      | 18866.00  |
| Detect             | 0.00      | 0.00          | 0.00      |
| %AbovePred         | 0.14      | 0.12          | 0.13      |
| %BelowPred         | 0.10      | 0.07          | 0.12      |

- 83 **Supporting Table 8**. Welch's t-tests comparing the mean relative abundances of phyla across
- 84 fire-affected and recovered soils. Bold values are significant at p < 0.05.

| Phylum           | T-statistic | DF    | p-value |
|------------------|-------------|-------|---------|
| Crenarchaeota    | 2.80        | 8.36  | 0.02    |
| Euryarchaeota    | -0.47       | 11.86 | 0.65    |
| [Parvarchaeota]  | -3.31       | 11.34 | 0.01    |
| kBacteria;Other  | 2.33        | 8.22  | 0.05    |
| AD3              | -1.58       | 7.28  | 0.16    |
| Acidobacteria    | -1.74       | 13.64 | 0.10    |
| Actinobacteria   | -0.22       | 13.12 | 0.83    |
| Armatimonadetes  | -0.58       | 13.21 | 0.57    |
| Bacteroidetes    | -4.00       | 9.73  | 0.00    |
| Chlamydiae       | -1.68       | 10.73 | 0.12    |
| Chlorobi         | -0.43       | 10.96 | 0.67    |
| Chloroflexi      | 2.82        | 9.67  | 0.02    |
| Cyanobacteria    | 1.85        | 8.07  | 0.10    |
| Elusimicrobia    | -3.45       | 8.01  | 0.01    |
| FCPU426          | -0.79       | 11.28 | 0.45    |
| Firmicutes       | 0.60        | 10.97 | 0.56    |
| Gemmatimonadetes | -2.24       | 12.33 | 0.04    |
| Nitrospirae      | 0.04        | 12.47 | 0.97    |
| OD1              | -1.28       | 10.05 | 0.23    |
| OP11             | -1.82       | 7.56  | 0.11    |
| Planctomycetes   | -3.33       | 11.61 | 0.01    |
| Proteobacteria   | -2.42       | 12.89 | 0.03    |
| SBR1093          | 2.02        | 8.00  | 0.08    |
| Spirochaetes     | -2.43       | 6.68  | 0.05    |
| TM6              | -2.48       | 7.47  | 0.04    |
| Tenericutes      | 0.14        | 10.06 | 0.89    |
| Verrucomicrobia  | -3.78       | 10.92 | 0.00    |
| WPS-2            | 0.41        | 10.37 | 0.69    |
| WS3              | -2.26       | 6.59  | 0.06    |
| Below 0.01       | -0.27       | 8.39  | 0.79    |