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Frequency of fictitious contradictions.

To examine the influence of NHST misinterpretations on scientific debates, we consider two

identical and independent studies of an effect that actually exists, i.e., its null hypothesis is false.

In each case, some statistical test for the existence of the effect gives either a significant or

non-significant result. The results of the two studies may be compared by: (i) a proper statistical

test checking whether effects in two cases are the same (correct method), or (ii) by checking

whether the studies agree as to the obtained statistical significance (incorrect method).

In the first case, the null hypothesis stating that there is no difference in effects is true because

both studies concern the same population. Therefore, a discrepancy of effects will appear by

chance with frequency α, which is the significance level adopted when comparing studies. The

existence of such false controversies is inevitable.

When the second method is applied, the number of false controversies may be much larger.

Assuming the same statistical power M for two studies, they both yield significant results with

probability M2 and non-significant results with probability (1−M)2. The remaining cases, in

which one of the studies gives significant and the other non-significant results, are commonly

misinterpreted as contradictions between the results. If such controversies do not result from
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application of any correct method, we call them fictitious. Overall, significant vs. non-significant

contradictions appear with probability 2M(1−M) which, for M = 0.5, equals 0.5. Thus, we can

expect such contradictions in 50% of comparisons of two identical studies– ten times more

frequently than inevitable contradictions if we apply the first method of comparison and take α =

0.05.

Next, we estimate the proportion of all contradictions (i.e., declared by either method) constituted

by fictitious contradictions (f ). Some but not necessarily all inevitable contradictions may also

lead to significant vs. non-significant discrepancies. Let h denote the fraction of such

contradictions. Then, the frequency of all contradictions is 2M(1−M) + (1− h)α, and the

frequency of fictitious contradictions is 2M(1−M)− hα. Therefore,

f =
2M(1−M)− hα

2M(1−M) + (1− h)α
. (1)

As is easy to show, f is a strictly decreasing function of h. Thus, for h ∈ [0, 1] this function

attains a minimum and maximum at h = 1 and h = 0, respectively. To find what values of f are

possible, it is sufficient to consider f(h) for these two extremes of h. Let us assume the

conventional significance level, α = 0.05. For statistical power M = 0.5, the values of f are 0.90

and 0.91. For M = 0.8, they are 0.84 and 0.87. Even for a power as high as M = 0.9 (or as low as

0.1), these two values do not decrease dramatically: 0.72 and 0.78.

Above derivation corresponds to the situation in which attention is paid only to statistical
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significance and not the sign of the effect. If direction of the effect is not omitted, and one of the

studies correctly detects the effect and the other meets directional error, i.e., declares the effect of

the opposite sign, the pair should be considered an inevitable contradiction, although they both

yield significant results. However, it is not straightforward to introduce this into Eq. 1.

For simplicity, assume the same significance level α∗ for both studies, such that α∗ = α.

Directional contradictions occur when one study makes a correct directional decision while the

other makes a directional error, so that their frequency is the doubled product of probabilities of

these events and should be added to the denominator. The probability of directional error is

bounded from above by α/2, while the probability of correct directional conclusion by 1.

Therefore, the upper bound for the frequency of directional contradictions is α and Eq. 1 changes

to:

fc >
2M(1−M)− hcα

2M(1−M) + (2− hc)α
. (2)

Here, subscript c denotes the correction for directional contradictions, and hc may differ from h

but still hc ∈ [0, 1] and fc remains a strictly decreasing function of hc. Thus, by taking hc = 1 one

obtains a very cautious lower estimate of the proportion of fictitious contradictions:

fc =
2M(1−M)− α
2M(1−M) + α

. (3)
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Putting α = 0.05 in Eq. 3 and for M ∈ [0.09, 0.91], more than a half of all contradictions

(possibly much more) are fictitious. Since in practice of many disciplines statistical power is

usually within this range1–5, the problem is serious.

To avoid fictitious contradictions resulting from misbelieved properties of NHST, it is necessary

to consistently use a “don’t know” category, i.e., non-significant result should lead to the

suspension of judgement. However, even with non-significant results, one can still obtain some

information about population parameters by deeming many values of parameters implausible. To

achieve this result, it is necessary to transgress NHST thinking and follow the ESCI approach.

Case study I: Protein translation efficiency determinants.

One of the well-established explanation of biased codon usage states that it increases the

efficiency and accuracy of translation6–8. A recent study9 seems to contradict this statement. The

authors constructed a library of 158 GFP synonymous sequences and expressed them in an

identical regulatory context in E.coli cells, gauging the GFP expression level by its fluorescence.

Surprisingly, “codon bias did not correlate with expression” (ρ = 0.14, p-value = 0.09), and the

authors concluded that codon bias does not have “significant effects” on protein levels. In

response, a related study10 on the endogenous genes of E.coli and S.cerevisiae reported a

statistically significant association between codon bias and protein abundance normalised to

mRNA level (ρ = 0.27, p-value = 1.7e-8, and ρ = 0.12, p-value = 1.47e-9, respectively). The

authors concluded that codon bias is an important determinant of translation efficiency, and the
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discrepancy between the studies stems from differences in mRNA’s folding energies of synthetic

and endogenous genes.

These conflicting results gained a good deal of interest from the research community and had

been cited over 900 times at the time of writing. They were discussed in many reviews8, 11, 12 and

were subjected to further analysis and interpretation13. Other researchers14, 15 applied a similar

experimental scheme for other genes, and found that neither the mRNA secondary structure nor

codon bias correlated with expression, although statistically significant correlations could be

spotted for other mRNA features.

We took a step back and calculated 95% CIs for correlations between genes’ codon bias and

expression level reported originally9, 10. As reference studies use different methods to gauge

codon bias (either Codon Adaptation Index CAI 16 or tRNA Adaptation Index tAI 17), we

performed our calculations for both indices separately. We used the same types of correlations as

those calculated in the reference studies: simple (with expression level measured as in the

reference studies) and partial (between codon bias and protein level (bacteria and yeast data sets)

or fluorescence (GFP data set)) while controlling for the mRNA level. Our analysis confirms

previous observations on statistical significance of the obtained correlations (Fig. 2a, main text).

Next, we calculated 95% CIs for the differences of all corresponding pairs of intra-species

correlations (Fig. 2b, main text). In the case of the yeast-GFP comparison of simple correlations

and also for some E.coli-yeast comparisons, the hypothesis that the compared sets have identical

correlation coefficients cannot be rejected. For these data, no discrepancy between studies could
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be found. In case of E.coli-GFP comparisons, the true correlation for E.coli genes is larger than

true correlation for GFP constructs, at least by 0.03.

To decide whether the correlation difference of size 0.03 is large enough to have any practical

consequences, we calculated the differences of correlations between codon bias and gene

expression, with gene expression inferred by several different, but qualitatively equivalent

experiments. Due to the availability of data, we performed this analysis only for the S.cerevisiae

genes. However, as experimental methods quantifying protein and mRNAs are similar for both

prokaryotes and eukaryotes, we expect similar variability in E.coli. Originally10, (local)

expression level of a gene was defined as the quotient of its protein and mRNA abundance,

measured experimentally by18 and19, respectively. The experimental measurements of these

quantities were performed independently by several other groups and, as their quality seems

similar, it may be assumed that the choice made in the reference study10 was arbitrary. To check

how such choices affect research conclusions, we repeated the calculation of the expression of

yeast genes by taking four genome-wide protein-level measurements18, 20–22 and five large scale

mRNA measurements19, 23–25, and then calculated protein-mRNA quotients for all possible

measurements combinations. Next, we calculated the 95% CIs for correlations between each

determined expression level and codon bias inferred by CAI or tAI. We refer to these as

alternative correlations. To facilitate comparisons, we limited this analysis to 303 genes common

to all nine genome-wide experiments (Fig. 3, main text); however, comparisons over partially

overlapping, larger data sets yielded similar results (S1 Fig and S2 Fig). As can be seen from

Fig. 3a, main text, the alternative correlations for the same variables (codon bias and expression)
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and an identical set of genes appear strikingly dissimilar. Some CIs indicate correlations that are

stronger than previously reported10, some are “statistically non-significant”, and some even show

weak negative correlations.

We quantified the sizes of the differences of correlations by calculating the 95% CIs for the

differences between the original correlation10, and each of the alternative correlations (Fig. 3b,

main text). For 8 of 19 cases of tAI vs. expression comparisons, the calculated CIs do not allow

us to determine the correlations’ difference sign; nevertheless, we observe positive or negative

differences in the remaining cases. Examining the extremes of their CIs allows us to conclude

that, for these cases, the difference between original and alternative correlation is at least 0.05.

However, there are other combinations for which the correlation difference is at least as high as

0.33. Note that some combinations with the “Gr” protein abundance set22 return negative

correlations between codon bias and expression. Even if we assume that these negative

correlations must result from data error and reject them as outliers, more than half of our

alternative correlations differed from the original correlation by at least 0.05. For confirmation of

these results, we also calculated 95% CIs for the correlation differences contrasts (Fig. 3c, main

text).

As the calculations were performed on the same set of genes, for which codon bias measures are

identical, all the differences between original and alternative correlations must result from the

discrepancies in mRNA and protein abundances reported by experimental studies. Such

discrepancies may be caused by both imperfections of contemporary experimental techniques,
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and natural variability of the cell. If this noise yields correlation differences of at least 0.05 in

more than half of analysed cases, the discussion of those differences with sizes of at least 0.03

becomes problematic.

In such a case, the explanation that the observed discrepancies result from differences in folding

energies of endogenous and artificial genes10 seems highly questionable. In support of the

hypothesis that folding energy modulates the relation between codon bias and translation

efficiency, the authors divided the sets of analysed E.coli and S.cerevisiae genes into five equal

size bins according to the folding energy of their transcripts. In each bin, they separately

calculated the correlation between codon bias and translation efficiency. They observed that “the

strength of association between codon bias and local translation efficiency is dependent on the

levels of folding energy” by finding that “the most significant correlation between codon bias and

local translation efficiency is in the bin corresponding to very high folding energy (-1.2 mean

folding energy)”. As p-values are not, by definition, estimates of the association strength, we

assume that “the most significant” was supposed to refer to the strongest correlation, not the

lowest p-value. We reproduce the results presented in Fig. 3.10 and supplement each reported

correlation coefficient with its 95% CI (S3 Fig, panels a and c). Next, for each pair of bins we

calculated the 95% CI for the difference of their correlations. As shown in S3 Fig (panels b and

d), we cannot determine the difference between any single pair of bins. This means that, on the

basis of these data, we are not able to answer whether folding energy modulates the association

between codon bias and expression. However, such an effect may exist, but it is relatively weak

and possibly too weak to be measured by existing techniques (compared to the correlation
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differences calculated above).

Case study II: PTPRC (CD45) association with the development of multiple sclerosis.

In 2000, a 77G allele of the gene PTPRC encoding protein tyrosine phosphatase, receptor-type C

(or CD45), was associated with multiple sclerosis (MS)26. One line of evidence for the increased

susceptibility to MS caused by the 77C→G polymorphism was based on the analysis of allele

frequencies in MS patients and controls. The authors claimed that “in three of four independent

case-control studies, we demonstrated an association of the mutation with MS”, which was

achieved by obtaining p-values < 0.05 in an exact Fisher test. In the two following studies27, 28,

the authors performed a similar analysis for different case-control groups, but they “did not find a

significant difference between allele frequencies in (...) MS patients and controls (P > 0.05)”27.

We reanalysed the data from all three contradicting publications. To determine whether the 77G

allele is a risk factor for the occurrence of multiple sclerosis, we first calculated the 95% CIs for

the ratio between the odds for the occurrence of disease among carriers of the mutated (77G) and

regular (77C) allele (Fig. 4a, main text). In all study groups, except the Initial and Validation

Marburg studies and the Hannover study from26, the obtained CIs for log odds ratio (dark blue)

did not allow us to determine whether the 77G allele is associated with higher or lower odds of

disease.

Next, we compared the odds ratios obtained for reference studies26–28 by calculating 95% CIs for

the relative odds ratios (i.e., ratio of odds ratios) between all possible pairs of study groups
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(Fig. 4b, main text). As all four groups from27 share the same cohort of MS patients and thus, are

not independent, they were not compared with each other. Hence, the odds ratios for the

American study group from26 and for all study groups from27, 28 cannot be distinguished between

each other based on the analysed data. In case of the Hannover group from26 and its comparisons

with groups from27, 28, all CIs are slightly right shifted, but the elevated odds ratio may be stated

only in two cases. For the Initial and Validation Marburg groups from26, the odds ratios are

clearly elevated in relation to groups from27, 28 and also in relation to the American group from the

same study26. This confirms the initial controversy between the analysed studies.

Why do the Initial and Validation Marburg groups26 differ so greatly? A closer look at the

Marburg controls raises supposition that the number of 77G carriers among them may be slightly

underestimated. By simple proportion, and assuming equal frequency of the 77G allele in all

analysed populations of healthy people, one should expect approximately 2 to 5 carriers in

Marburg control groups. The cause of this inconsistency may be found in the Methods section

in26, which explains, “We personally interviewed all healthy donors with respect to neurological

symptoms. Healthy donors with a history of neurological symptoms or a family history for MS or

related diseases were excluded [from the Marburg controls ed.]”.

This approach requires further thought, as comparing two Marburg groups26 with studies that do

not impose such restrictions may be not appropriate. If the 77G allele indeed occurs more often

among MS patients and an examined healthy donor has a family history of MS, it is more likely

that some of his relatives are carriers of the 77G allele rather than 77C; hence it is more likely that
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he is a 77G carrier himself. Excluding such persons from the control group results in a decreased

number of 77G carriers in Marburg controls. This exaggerates the initial disproportion in the

mutated allele frequencies, which finally may become statistically significant in an exact Fisher

test or may result in elevated odds of disease, as shown above.

To examine how strongly the interview procedure influences the final outcome, we determined

how many 77G carriers must be excluded from the control group of the Initial and Validation

Marburg studies to obtain at least somewhat higher odds of disease given the mutated allele (i.e.,

to obtain statistically significant odds ratio). We found that if the interview procedure had

overlooked only 5 and 3 77G carriers in the Initial and Validation Marburg study, respectively, the

elevated odds for disease could not have been stated and the exact Fisher test performed in26

would not have resulted in a statistically significant outcome. Note that both numbers of 77G

carriers in controls (5/194 and 3/117) are in agreement with expectations based on proportions

observed in other analysed populations. Marburg study groups with modified controls, i.e.,

enlarged by 5 (Initial study) and 3 (Validation study) healthy 77G carriers, were further used to

calculate new CIs for odds ratios and relative odds ratios, which are presented in the main text

Fig. 4a (light blue) and 4b (light red), respectively. The obtained CIs for odds ratios do not allow

us to state whether there are higher or lower odds of disease among 77G carriers in both modified

Marburg studies. Panel b shows that results for the modified Marburg data are consistent with

those reported for other study groups, as none of the relative odds ratios may be shown to be

different than one (in the linear scale) with 95% confidence.
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The addition of 5 and 3 77G carriers to control groups made the initial controversy disappear.

This example shows, that NHST based reasoning exhibits chaotic behaviour, as small changes in

the input data may result in radically different outcomes, namely, a lack or presence of statistical

significance, that is immediately interpreted as the lack or presence of the association between the

analysed factor and disease. This chaos originated from the reluctance to quantitative

interpretations and it is apparent in the poorly framed research problem. The question is not

whether there is an association between the 77G allele and disease, but rather how strong this

association is and, further, whether it is strong enough to have any practical consequences on

multiple sclerosis prevention and treatment.

Case study III: Divergence of X-linked and autosomal genes in Drosophila.

According to a popular hypothesis, if certain conditions are fulfilled, loci on the X chromosome

are expected to have higher rates of adaptive evolution than those located on the autosomes29.

When the number of known gene sequences was small, several groups tested this hypothesis,

examining the evolutionary rates of X-linked and autosomal genes in Drosophila30, 31. Using

known DNA sequences of D.melanogaster and D.simulans, they estimated non-synonymous (dN)

and synonymous divergence (dS) for tens of genes associated either with X or autosomal

chromosomes. However, the comparison of their mean divergences with a t-test did not support

the hypothesis, as the authors found “no difference in the rate of amino acid substitutions between

X-linked and autosomal loci (using dN or dN/dS)”31. Similar results for dS were obtained

elsewhere using a rank test30, and the authors concluded: “we find (...) no difference between
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arms [X chromosome vs. right arm of the 3rd autosome - ed.] for silent divergence between

species”. This result led to the conclusion that “there is no evidence for faster X evolution, at least

in the present dataset”31. This observation seemed also incoherent with a previous finding that

X-linked paralogs have “significantly higher” rates of divergence (i.e., dN/dS) than other gene

duplicates in D.melanogaster32. The authors ascribed the observed disparity to the differences in

the distribution of dominance effects between single-copy and duplicate genes31. At the same

time, however, they emphasised that their dataset might be unrepresentative, and a faster X effect

might be revealed, if tested among all potential X-linked and autosomal targets of selection.

Indeed, as soon as the sequences of several Drosophila genomes became available, and mean

divergence could be compared between sets of genes even approximately 500 times larger than

previously, “statistical support for greater divergence of X-linked versus autosomal genes”33 was

finally found by obtaining p-values < 0.05∗. To demonstrate how such support could be achieved,

we compared previous results30, 31 with genome-wide analysis33. To unify the calculations

between studies, for all genes we used gene divergence estimates and chromosome associations

from33 (see Supplementary Methods, below).

We calculated the 95% CI for the median dN and dS among X-linked and autosomal genes of

D.melanogaster that were analysed by each of the reference studies. As shown in Fig. 5, main

∗... or even much less. One of the reported p-values in this work equalled 1.8e-275– the smallest we have ever seen.

This value is incomprehensible: the ratio of the Planck length to the Observable Universe diameter is only 1.8e-62.

However, neither p-value size nor precision of its estimate guarantee a biologically significant effect. A small p-value

only indicates that there is an extremely strong evidence for the sign of the observed difference or correlation.
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text, and S4 Fig, with the increase in the sample sizes in the genome-wide study33, the CIs for

median X-autosomal divergence differences narrow and finally most become statistically

significant (panels b). Panels c show 95% CIs for the contrasts between X-autosome divergence

differences calculated for genes from conflicting studies. In this analysis both types of

inter-studies differences were considered, namely: the genome-wide study33 vs. smaller

studies30, 31 and vice versa, smaller studies vs. the genome-wide study, but the given data did not

allow us to identify any discrepancy between studies (i.e., the sign of contrasts could not be

stated).

Therefore, as far as statistical significance is the yardstick, these studies lead to opposite

conclusions, but actually no conflict between their results may be claimed. To solve this issue, the

question of the X-autosome divergence difference must be reconsidered, e.g., by the ESCI

method, which is illustrated in S5 Fig and S6 Fig. For instance, the X-autosome difference for

pairwise dN ranges from 0.00022 to 00012. However, when the CI limits are calculated by other

tools (bootstrap instead of the Wilcoxon test), statistical significance vanishes. A slight shift of

CIs caused by different statistical approaches is not surprising but may dramatically change the

NHST-based conclusions, especially when the biological significance of an effect is ignored.

Note also that in case of dS, lineage-specific median divergence is larger in X-linked genes, and

the difference ranges from 0.0015 to 0.006 (bootstrap CIs). A similar size difference was found

for the median pairwise dS (0.0013–0.0058), but in this case the autosomal genes have higher dS.

This lack of coherence may suggest that the observed X-autosomal divergence differences are

fluctuations that manifested as statistically significant after the increase of sample sizes. The only
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way to prove that X-linked genes evolve faster than autosomal loci in Drosophila is to

demonstrate that the observed X-autosomal divergence difference is positive and large enough to

have biological and evolutionary consequences. We suspect that this question may be difficult

even for population genetics experts, as direct interpretation of divergence values does not seem

to be a common practice. In fact, none of papers we discuss attempted to pose this question.

To overcome this problem, we compared the obtained X-autosomes dN and dS differences with a

control, i.e., divergence differences between several subsets of autosomal genes that are not

assumed to have significant consequences on evolution and population genetics in Drosophila.

Following the steps from33, we performed the analysis of lineage specific divergence separately

for three Drosophila species, and pairwise divergence between D.melanogaster and D.simulans.

Based on their original data, we calculated 95% CIs for the weighted mean divergence of four

subsets of autosomal genes associated with chromosome 2, chromosome 3, the left arms of

chromosomes 2 and 3, and the right arms of chromosomes 2 and 3 (S5 Fig and S6 Fig). Next, we

calculated the 95% CIs for the median divergence differences between autosomes 2 and 3

(referred to as “inter-autosomal difference”) and between the left and right arms of autosomes

(referred to as “intra-autosomal difference”), as shown in panels b. The choice of weighted means

for panels a and medians for panels b was made with respect to the methodology applied to

generate Tables S1 and S3 by33. Finally, panels c show 95% CIs for the contrasts between

X-autosome and both types of autosomal divergence differences. Again, the biological

significance of these values should be taken into consideration. Nevertheless, in this particular

situation, a distinction between smaller and larger divergence differences is sufficient for our
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purposes, i.e., the elimination of effects (X-autosome divergence differences) indistinguishable

from naturally-occurring divergence fluctuations within autosomal loci. More precisely, we

recognise a biological significance of an effect as indemonstrable if it cannot be distinguished

from at least one of the inter- or intra-autosomes divergence differences calculated within the

same set of genes. All possible types of inter- and intra-autosomes differences are considered,

namely 2nd autosome vs. 3rd, 3rd vs. 2nd, left (L) vs. right (R) autosomal arms, and R vs. L.

Hence, for the three analysed species of Drosophila, and both pairwise and lineage-specific

divergence, dN differences between X-linked and autosomal genes cannot be distinguished from

differences observed between genes located on two autosomes or the left and right autosomal

arms, for which a hypothesis of faster evolution has never been proposed (S6 Fig). The same

observation holds for X-autosomal dS differences, even though some of them are statistically

significant (S5 Fig)†.

Except the nonsynonymous and synonymous sites in coding sequences, the reference study33

compared sequence divergence in four additional genetic elements. Following their methodology,

we prepared four more figures, analogous to S5 Fig, with similar analysis for introns, intergenic

regions, 3’ and 5’ UTRs.

†Note that despite smaller sample sizes, all lineage-specific dS differences between the 2nd and 3rd autosome

shown in this figure are also statistically significant. Maybe population genetics should revise its hypotheses to include

one of faster evolution of even chromosomes? Even if it does not make biological sense, we may claim that such a

hypothesis has been well “statistically supported”.
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For introns (S7 Fig) and intergenic regions (S8 Fig), the X-autosome divergence differences are

again indistinguishable from inter- and intra-autosomal differences. The only exception is the

case of lineage-specific divergence in D.melanogaster introns. Not only is the X-autosome

divergence difference negative, but it is also larger (in absolute value) than any of the inter- or

intra-autosomal differences. This finding suggests the possibility of a biologically relevant effect,

but of faster evolution of autosomal introns. As we are aware that the biological significance

threshold used in our study is not very demanding and that such an outcome is limited to only one

case, we shall not discuss its evolutionary consequences. Consequently, it seems that only

evidence from the UTR case may support the faster-X evolution hypothesis. As shown in S9 Fig

and S10 Fig, besides the lineage-specific divergence in D.melanogaster, all X-autosomal

divergence differences are positive and at least somewhat larger than inter- and intra- autosomal

differences. Although it still does not prove that the X-autosome divergence difference in UTRs is

biologically important, we may at least discuss this possibility.

Finally, we compared the above results with conclusions reached previously33 after the analysis of

the same data. The authors summarised their findings as follows: “(...) of the 18 lineage

divergence estimates (six site types and three lineages) only one, D.simulans synonymous sites,

failed to show faster-X evolution (Table 1).” The reference table shows that, indeed, there are 17

positive X-autosome differences in divergence weighted means, more precisely, in their point

estimates. Surprisingly, their next sentence notes “not all classes of site/lineages showed

statistically significant faster X-evolution”. The results of their rank tests and obtained p-values

are presented schematically in Table S333. Visual inspection immediately provided two cases of
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“failure” (marked as X < A and indicating negative X-autosome divergence difference).

Additionally, we found four cases of statistically non-significant X-autosome divergence

difference that were misleadingly marked as X = A. We distinctly disagree with the authors and

claim that such cases also do not show faster-X evolution, as it is not possible to recognise the

difference as positive if measurements are not sufficiently precise to state its sign. Among the 12

remaining lineage-specific comparisons, 7 show X-autosome divergence differences

indistinguishable from divergence fluctuations observed within and between autosomes. Upon

recalculation, the spectacular outcome of 17 of the 18 cases confirming the faster-X evolution is

reduced to 5 of 18 cases and is limited only to the UTRs. Similarly, from 4 out of 6 confirming

comparisons of pairwise divergence, only 2 remained after our revision. This reduction was

achieved solely by replacing p-values with CI calculations and applying one of the weakest

criteria for the elimination of biologically insignificant results.

Due to the enormous size of the reference study33, we could not repeat all its analyses.

Nevertheless, even our limited revision revealed that the majority of the analysed statistically

significant outcomes could not be demonstrated to have biologically relevant effects. These

results are further utilised as support for generalisations such as “the X chromosome (...) evolves

faster” or “faster-X effect is likely to be general for Drosophila but vary in magnitude across

lineages and site types”33, even though its magnitude is indistinguishable from the magnitude of

the “faster-2nd-autosome effect” or “faster-left-autosomal-arms effect” for most studied gene

elements, including coding sequences, introns and intergenic regions. Even the promising case of

UTRs requires further examination because the biological significance threshold we applied was
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one of the lowest possible. Despite its impact and over 200 citations, the genome-wide study33

did not eliminate the faster-X effect debate34–36. Instead, it is further fuelled by new NHST-based

conclusions. It seems that as long as measurement precision estimates and quantitative

interpretations are omitted, many similar conflicts are likely to emerge and nestle in biological

sciences, especially now when the analysis of large samples– which facilitates the obtaining of

statistically significant outcomes– is easier than ever.

Supplementary Methods

Case study I: Protein translation efficiency determinants.

Coding sequences. The sequences of GFP constructs were taken from9. The sequences of

E.coli and S.cerevisiae genes were taken from the same sources as in10, i.e., from the National

Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/ftp/), accessed

November 2012, and from37, respectively.

Translation efficiency. Translation efficiency of 423 GFP constructs gauged by fluorescence

and the mRNA levels of 79 GFP constructs gauged by Northern Blotting, were taken from9. As in

the reference study10, protein and mRNA abundances for E.coli genes were taken from21.

Similarly, yeast protein abundances were taken from18 (referred to as “Ne”), and yeast mRNA

levels were taken from19 (although they originally come from38, referred to as “Wh”).
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Alternative correlations. Alternative correlations were calculated taking protein levels of yeast

genes from the following studies: “Gh”20, “Gr”22, and “Lu”21 (YEPD medium). The mRNA

levels were taken from: “Ar”23, “In” 25, “Ma”24, and “Wm”19 (micro-array experiment). The two

letter codes are the same as those used in Fig. 3, main text, and S1 Fig and S2 Fig to refer to these

studies. In case of the “In” study25, the relative values of mRNA levels gauged by RNAseq were

transformed to the mRNA copy number in the cell, as shown by39. The remaining studies provide

information on absolute abundances and did not require further curation.

Codon Bias. The CAI was computed using the seqinr R package40. The tAI was computed as

shown in10. The values of the relative adaptiveness of a codon (w) required to calculate tAI were

taken directly from Table S210.

Correlations, correlations differences and contrasts. All correlations reported in our analysis

are the non-parametric Spearman correlations. The 95% CIs for correlation coefficients were

calculated using standard tools from the R environment. Correlation differences CIs were

calculated with help of cocor41 and bootES42 R packages, and verified using our own ad-hoc

written Fortran programs, implementing both standard and percentile bootstrap43.

The correlation differences CIs presented in the main text Fig. 2b (solid line), in the bottom

panels of Fig. 3 (main text), S1 Fig, and S2 Fig were calculated by the cocor.indep.groups

function, zou2007 method44. As the analysed sets of GFP, Yeast and E.coli genes do not intersect,
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correlations within them may be treated as independent. The same method was used to calculate

CIs presented in the S3 Fig (panels b and d). The bootES42 R package was used to calculate

correlation difference CIs presented in the main text Fig. 2b (dashed lines).

The correlation difference CIs presented in the main text Fig. 3b were calculated by the

cocor.dep.groups.overlap function from the cocor package41, using the zou2007 method44. This

function is used to compare dependent (correlated) correlations (i.e., those calculated over the

same sample), that have a common variable (i.e., codon bias gauged by tAI). Note, however, that

the original and alternative sets of genes overlap only partially, which raises doubts whether

correlations within them should be treated as completely dependent. Although performing the

analysis over the set of 303 common genes fulfils the definition of dependence, it strongly reduces

the sample size and widens the obtained CIs. For this reason, we decided to repeat the

calculations of correlations and correlation differences separately for each of the alternative

studies. We created 19 sets of genes common for the original study and each of the 19 alternative

studies used in our analysis. For each set we calculated the 95% CIs for correlation between

codon bias and translation efficiency. Next, we estimated correlation differences between each of

these sets and the original study with help of the cocor package41. If codon bias in alternative

correlations was gauged by tAI, the cocor.dep.group.overlap was used; if codon bias was gauged

by CAI, i.e., there was no variable in common, the cocor.dep.group.nonoverlap function was

applied. As seen from the S1 Fig, such relaxation of constrains does not affect the conclusions

drawn from the main text Fig. 3. This observation also holds, when all compared correlations

within original and alternative sets are treated as completely independent and their differences are
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estimated by the cocor.indep.group function41 (S2 Fig).

The CIs for correlation differences contrasts were calculated using our own, ad-hoc written

Fortran programs, employing IMSL subroutines and implementing both standard and percentile

bootstrap43, and treating correlations as independent or dependent as above. Since computing

contrasts between correlations is quite non-standard, we paralelly computed CIs for contrasts of

z-transformed correlations to test them for non-zero values of contrasts considered. The results

obtained from all these alternative variants (not shown) were very similar and the overall picture

remained the same.

Case study II: PTPRC (CD45) association with the development of multiple sclerosis.

Odds ratio and relative odds ratio. The numbers of MS patients and controls, as well as the

numbers of 77G carriers were taken directly from the reference works of 26–28. The 95% CIs for

odds ratios and relative odds ratios were found by standard and percentile bootstrap43 using our

own, ad-hoc written Fortran programs. Results for odds ratios were checked against those from

SAS/FREQ procedure employing the exact method45 and were close to them, making no

difference in the overall picture.

Case study III: Divergence of X-linked and autosomal genes in Drosophila.

Data. The lists of D.melanogaster genes analysed by30, 31 were taken from the reference studies

and mapped to the data set of gene divergence estimates from33. Due to annotation changes and
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nomenclature inconsistencies, only the subsets of genes analysed previously were found in the

divergence data set, diminishing the size of the original set of30 from 40 to 27 genes, and the set

of31 from 245 to 164 genes. One additional gene was removed from the latter due to disagreement

of the X-autosome allocation between studies.

Divergence comparisons. For Fig. 5 (main text) and S4-S10 Fig, the 95% CIs for

median/weighted mean divergence (panels a), median divergence differences (panels b), and

divergence difference contrasts (panels c) were obtained using standard and percentile

bootstrap43, implemented in our own, ad-hoc written Fortran programs. Whenever possible, their

results were checked against calculations performed with help of a simpleboot R package46, with

the CI limits gauged by both normal approximation and a percentile method. All calculations

variants returned similar results (for larger samples, almost identical), and thus only the results of

the percentile bootstrap are shown in the figures. For easier comparison with the reference

studies, the 95% CIs for median divergence differences were also calculated with help of a

wilcox.test method from the stats R package and are shown in panels b.
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