Direction	$\mathbf{RE}_{max}(1)$	RE Dist.	p-val Dist.
$A \rightarrow C$	0.0042	4	10
$A \rightarrow G$	0.0186	2	10
$A \rightarrow T$	0.0093	3	10
$C \rightarrow A$	0.0093	4	10
$C \rightarrow G$	0.0057	3	10
$C \rightarrow T$	0.0861	1	10
$G \rightarrow A$	0.0860	1	10
$G \rightarrow C$	0.0054	3	10
$G \rightarrow T$	0.0091	4	10
$T \rightarrow A$	0.0095	3	10
$T \rightarrow C$	0.0190	2	10
$T \rightarrow G$	0.0039	4	10

Supplementary tables and figures to Zhu et al.

Table S1: The most distant positions from the mutation with $\text{RE}(1) \geq 10\%$ of $\text{RE}_{max}(1)$. RE(1) is the first order RE for the position, and $\text{RE}_{max}(1)$ the largest RE from a first order effect for the surveyed positions. RE Dist. is the absolute value of the relative position based on the RE value. p-val Dist. is the corresponding distance based on the p-value. The maximum possible distance is 10. Only point mutations significant after correcting for 20 tests using the Holm-Šidäk procedure were considered.

Direction	$\mathbf{RE}_{max}(1)$	$\mathbf{Pos.}(1)$	$\mathbf{RE}_{max}(2)$	Pos. (2)
$A \rightarrow C$	1.6×10^{-5}	+1	-	-
$A \rightarrow G$	4.2×10^{-5}	+1	$2.6 imes 10^{-5}$	(-2, -1)
$A \rightarrow T$	9.3×10^{-5}	-1	1.5×10^{-5}	(-2, +2)
$C {\rightarrow} A$	$2.7 imes 10^{-5}$	-1	3.4×10^{-5}	(-1, +1)
$C \rightarrow G$	3.8×10^{-5}	-1	1.5×10^{-5}	(-2, -1)
$C \rightarrow T$	3.2×10^{-5}	+1	1.2×10^{-5}	(-1, +1)

Table S2: Neighbourhood influences on point mutations differ between autosomal intronic and intergenic point mutations. As there was no significant strand asymmetry detected for either sequence class, only + strand effects are shown. Only point mutations with at least one significant test after correcting for 15 tests using the Holm-Šidäk procedure are shown. Non-significant results are indicated by '-'.

Direction	$\mathbf{RE}_{max}(1)$	Pos. (1)
$A \rightarrow C$	1.7×10^{-5}	+1
$A \rightarrow G$	6.3×10^{-6}	+1
$C \rightarrow G$	1.4×10^{-5}	+1
$C \rightarrow T$	5.0×10^{-6}	+1
$G \rightarrow A$	6.2×10^{-6}	+1
$T \rightarrow A$	1.6×10^{-5}	+2
$T \rightarrow C$	$8.3 imes 10^{-6}$	-1
$T \rightarrow G$	2.1×10^{-5}	-1

Table S3: Significant differences in neighbourhood effect between intergenic autosomal and X-chromosomal point mutations. $\operatorname{RE}_{max}(1)$ the largest RE from a first order test and Pos.(1) is the corresponding position. Only mutations significant after correcting for the 15 different tests using the Holm-Šidäk procedure are shown.

Direction	RET
$G \rightarrow A$	-0.0032
$A \rightarrow G$	-0.0031
$C \rightarrow T$	-0.0031
$T \rightarrow C$	-0.0026
$C \rightarrow G$	-0.0019
$G \rightarrow C$	-0.0017
$T \rightarrow G$	-0.0011
$A \rightarrow C$	-0.0007
$T {\rightarrow} A$	0.0038
$A \rightarrow T$	0.0039
$G \rightarrow T$	0.0051
$C \rightarrow A$	0.0052

Table S4: Significant differences in mutation spectra between autosomal intergenic and intronic point mutations. Separate log-linear models were used for each starting base (X in $X \rightarrow Y$). RET is the RE term for that row mutation direction. Only RET from the intergenic group are shown. A positive (negative) RET indicates a excess (deficit) of that mutation in the intergenic group. All tests returned p-values that were below the limit of detection and thus were statistically significant after correcting for 4 tests using the Holm-Šidäk procedure.

Direction	RET
$T {\rightarrow} A$	-0.0004
$C \rightarrow A$	-0.0003
$G \rightarrow T$	-0.0003
$A \rightarrow T$	-0.0002
$A \rightarrow C$	-0.0002
$T \rightarrow G$	-0.0001
$G \rightarrow C$	-0.0000
$C \rightarrow G$	0.0000
$C \rightarrow T$	0.0003
$\mathbf{G} {\rightarrow} \mathbf{A}$	0.0003
$A \rightarrow G$	0.0004
$T \rightarrow C$	0.0005

Table S5: Significant differences in spectra between autosomal and X-chromosomal intergenic point mutations. Separate log-linear models were used for each starting base (X in X \rightarrow Y). RET is the RE term for that row mutation direction. p-value is from the corresponding hypothesis test. Only RET from the autosomal group are shown. A positive (negative) RET indicates a excess (deficit) of that mutation in autosomes. All tests returned p-values that were $\leq 4.7e^{-9}$ and thus were statistically significant after correcting for 4 tests using the Holm-Šidäk procedure.

Direction	RET
$T \rightarrow G$	-0.0001
$A \rightarrow C$	-0.0001
$G \rightarrow T$	-0.0001
$C \rightarrow A$	-0.0001
$G \rightarrow C$	-0.0001
$A \rightarrow T$	-0.0001
$T {\rightarrow} A$	-0.0000
$C \rightarrow G$	0.0000
$C \rightarrow T$	0.0001
$G \rightarrow A$	0.0002
$T \rightarrow C$	0.0002
$A \rightarrow G$	0.0002

Table S6: Significant differences in spectra between autosomal and X-chromosomal intronic point mutations. Separate log-linear models were used for each starting base $(X \text{ in } X \rightarrow Y)$. RET is the RE term for that row mutation direction. p-value is from the corresponding hypothesis test. Only RET from the autosomal group are shown. A positive (negative) RET indicates a excess (deficit) of that mutation in autosomes. All tests returned p-values that were $\leq 8.6e^{-5}$ and thus were statistically significant after correcting for 4 tests using the Holm-Šidäk procedure.

Direction	$\mathbf{RE}_{max}(1)$	$\mathbf{Pos.}(1)$	$\mathbf{RE}_{max}(2)$	$\mathbf{Pos.}(2)$	$\mathbf{RE}_{max}(3)$	Pos. (3)
$A \rightarrow C$	0.0132	-1	0.0093	(-1, +1)	0.0039	(-2, -1, +1)
$A \rightarrow G$	0.0134	-1	0.0164	(-1, +1)	0.0032	(-2, -1, +1)
$A \rightarrow T$	0.0116	-1	0.0030	(-2, +1)	0.0027	(-2, -1, +1)
$C \rightarrow A$	0.0276	-1	0.0076	(-1, +1)	0.0029	(-1, +1, +2)
$C \rightarrow G$	0.0259	+1	0.0028	(-1, +1)	0.0025	(-2, -1, +1)
$C \rightarrow T$	0.0840	-1	0.0110	(-1, +1)	0.0006	(-2, -1, +1)

Table S7: Test of strand symmetric neighbourhood influences on malignant melanoma point mutations. $\text{RE}_{max}(\#)$ is the maximum RE for order # and Pos.(#) the corresponding position(s). Only effects significant after correcting for the 15 different tests using the Holm-Šidäk procedure are shown. Non-significant results are indicated by '-'.

Direction	\mathbf{RET}	p-value
$C \rightarrow G$	-0.0024	8.0×10^{-50}
$C \rightarrow A$	-0.0020	$8.0 imes 10^{-50}$
$A \rightarrow T$	0.0007	0.1650
$A \rightarrow G$	0.0018	0.1650
$C \rightarrow T$	0.0048	8.0×10^{-50}

Table S8: Differences in spectra between strands for malignant melanoma point mutations. Separate log-linear models were used for the + strand starting bases A and C. RET is the RE term for that row mutation direction. Only RET from the + strand are shown. A positive (negative) RET indicates a excess (deficit) of that mutation on the + strand. p-value is from the corresponding hypothesis test. Only mutations from C were significant after correcting for 2 tests using the Holm-Šidäk procedure.

Direction	$\mathbf{RE}_{max}(1)$	$\mathbf{Pos.}(1)$	$\mathbf{RE}_{max}(2)$	$\mathbf{Pos.}(2)$	$\mathbf{RE}_{max}(3)$	Pos. (3)
$A \rightarrow C$	0.0034	-1	0.0016	(+1, +2)	0.0012	(-2, -1, +1)
$A \rightarrow G$	0.0205	+1	0.0042	(-2, -1)	0.0007	(-2, -1, +1)
$A \rightarrow T$	0.0089	+1	0.0051	(-1, +1)	0.0025	(-1, +1, +2)
$C \rightarrow A$	0.0092	+1	0.0035	(-1, +1)	0.0012	(-1, +1, +2)
$C \rightarrow G$	0.0049	+1	0.0022	(+1, +2)	0.0008	(-1, +1, +2)
$C \rightarrow T$	0.0924	+1	0.0004	(+1, +2)	0.0002	(-2, -1, +1)

Table S9: Neighbourhood influences on point mutations within autosomal introns. $\text{RE}_{max}(1)$ the largest RE from a first order test and Pos.(1) is the corresponding position. Only mutations significant after correcting for the 15 different tests using the Holm-Šidäk procedure are shown.

Direction	$\mathbf{RE}_{max}(1)$	$\mathbf{Pos.}(1)$	$\mathbf{RE}_{max}(2)$	$\mathbf{Pos.}(2)$	$\mathbf{RE}_{max}(3)$	Pos. (3)
$A \rightarrow C$	0.0033	-1	0.0009	(-1, +1)	-	-
$A \rightarrow G$	0.0023	+1	0.0005	(-1, +1)	0.0004	(-1, +1, +2)
$A \rightarrow T$	0.0071	-1	0.0023	(+1, +2)	-	-
$C {\rightarrow} A$	0.0065	-1	0.0013	(-2, -1)	0.0007	(-2, +1, +2)
$C \rightarrow G$	0.0007	+1	0.0004	(+1, +2)	0.0006	(-2, -1, +2)
$C \rightarrow T$	0.0268	-1	0.0030	(-1, +1)	0.0002	(-2, -1, +1)
$G \rightarrow A$	0.0275	+1	0.0017	(-1, +1)	0.0002	(-1, +1, +2)
$G \rightarrow C$	0.0008	-1	0.0004	(+1, +2)	0.0006	(-2, -1, +2)
$G \rightarrow T$	0.0056	+1	0.0011	(+1, +2)	0.0007	(-1, +1, +2)
$T \rightarrow A$	0.0080	+1	0.0018	(-2, -1)	0.0018	(-1, +1, +2)
$T \rightarrow C$	0.0023	-1	0.0014	(-1, +1)	0.0005	(-1, +1, +2)
$T \rightarrow G$	0.0014	+1	0.0015	(-1, +1)	0.0013	(-2, +1, +2)

Table S10: Significant differences in the influence of neighbours on exonic point mutations between germline and malignant melanoma. $\operatorname{RE}_{max}(1)$ the largest RE from a first order test and Pos.(1) is the corresponding position. Only mutations significant after correcting for the 15 different tests using the Holm-Šidäk procedure are shown. Non-significant results are indicated by '-'.

Direction	RET
$T \rightarrow C$	-0.0332
$A \rightarrow G$	-0.0327
$C \rightarrow G$	-0.0109
$C \rightarrow A$	-0.0092
$G \rightarrow C$	-0.0091
$G \rightarrow T$	-0.0080
$A \rightarrow C$	0.0045
$T \rightarrow G$	0.0061
$G {\rightarrow} A$	0.0263
$C \rightarrow T$	0.0346
$T \rightarrow A$	0.0624
$A \rightarrow T$	0.0624

Table S11: Significant differences in spectra between germline exon and malignant melanoma point mutations. Separate log-linear models were used for each starting base $(X \text{ in } X \rightarrow Y)$. RET is the RE term for that row mutation direction. Only RET from the melanoma group are shown. A positive (negative) RET indicates a excess (deficit) of that mutation in the melanoma group. All tests returned p-values that were below the limit of detection and thus were statistically significant after correcting for 4 tests using the Holm-Šidäk procedure.

Figure S1: Flanking influences on $C \rightarrow T$ mutation in autosomal exon sequences. First order effects are the dominant neighbourhood influence, RE_{max} (y-axis) is the maximum RE from the possible evaluations for a motif length (x-axis), a Single position effects, b Two-way effects, and c Three-way effects.

Figure S2: A panel of all 12 point mutations from autosomal intergenic germline mutations. Text in each panel indicates the number of SNPs analysed.

Figure S3: Flanking influences on $A \rightarrow G$ mutation in autosomal exon sequences. a First order effects are the dominant neighbourhood influence, b Single position effects, c Two-way effects, and d Three-way effects

Figure S4: The extent of neighbourhood effects on autosomal intergenic mutations. a C \rightarrow T, a A \rightarrow G.