
SymPy: Symbolic Computing in Python1

Supplementary material2

As in the paper, all examples in the supplement assume that the following has been run:3

>>> from sympy import *4

>>> x, y, z = symbols('x y z')5

1 LIMITS: THE GRUNTZ ALGORITHM6

SymPy calculates limits using the Gruntz algorithm, as described in [7]. The basic idea is as7

follows: any limit can be converted to a limit lim
x→∞

f(x) by substitutions like x→ 1
x . Then8

the subexpression ω (that converges to zero as x→∞ faster than all other subexpressions) is9

identified in f(x), and f(x) is expanded into a series with respect to ω. Any positive powers10

of ω converge to zero (while negative powers indicate an infinite limit) and any constant term11

independent of ω determines the limit. When a constant term still dependends on x the Gruntz12

algorithm is applied again until a final numerical value is obtained as the limit.13

To determine the most rapidly varying subexpression, the comparability classes must first be
defined, by calculating L:

L≡ lim
x→∞

log |f(x)|
log |g(x)| (1)

The relations <, >, and ∼ are defined as follows: f > g when L=±∞ (it is said that f is more
rapidly varying than g, i.e., f goes to ∞ or 0 faster than g), f < g when L= 0 (f is less rapidly
varying than g) and f ∼ g when L 6= 0,±∞ (both f and g are bounded from above and below by
suitable integral powers of the other). Note that if f > g, then f > gn for any n. Here are some
examples of comparability classes:

2< x < ex < ex2
< eex

2∼ 3∼−5

x∼ x2 ∼ x3 ∼ 1
x
∼ xm ∼−x

ex ∼ e−x ∼ e2x ∼ ex+e−x

f(x)∼ 1
f(x)

The Gruntz algorithm is now illustrated with the following example:

f(x) = ex+2e−x
−ex + 1

x
. (2)

First, the set of most rapidly varying subexpressions is determined — the so-called mrv set.14

For (2), the mrv set {ex,e−x,ex+2e−x} is obtained. These are all subexpressions of (2) and they15

all belong to the same comparability class. This calculation can be done using SymPy as follows:16

>>> from sympy.series.gruntz import mrv17

>>> mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)[0].keys()18

dict_keys([exp(x + 2*exp(-x)), exp(x), exp(-x)])19

Next, an arbitrary item ω is taken from mrv set that converges to zero for x→∞ and doesn’t20

have subexpressions in the given mrv set. If such a term is not present in the mrv set (i.e.,21

all terms converge to infinity instead of zero), the relation f(x) ∼ 1
f(x) can be used. In the22

considered case, only item ω = e−x can be accepted.23

The next step is to rewrite the mrv set in terms of ω = g(x). Every element f(x) of the mrv
set is rewritten as Aωc, where

c= lim
x→∞

logf(x)
logg(x) , A= elogf−c logg (3)

Note that this step includes calculation of more simple limits, for instance

lim
x→∞

logex+2e−x

loge−x
= lim

x→∞

x+ 2e−x

−x
=−1 (4)

In this example we obtain the rewritten mrv set: { 1
ω ,ω,

1
ω e

2ω}. This can be done in SymPy with24

>>> from sympy.series.gruntz import mrv, rewrite25

>>> m = mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)26

>>> w = Symbol('w')27

>>> rewrite(m[1], m[0], x, w)[0]28

1/x + exp(2*w)/w - 1/w29

Then the rewritten subexpressions are substituted back into f(x) in (2) and the result is expanded
with respect to ω:

f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω+O(ω2) (5)

Since ω is from the mrv set, then in the limit as x→∞, ω→ 0, and so 2ω+O(ω2)→ 0 in (5):

f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω+O(ω2)→ 2 + 1

x
(6)

In this example the result (2+ 1
x) still depends on x, so the above procedure is repeated until30

just a value independent of x is obtained. This is the final limit. In the above case the limit is 2,31

as can be verified by SymPy:32

>>> limit(exp(x+2*exp(-x))-exp(x) + 1/x, x, oo)33

234

In general, when f(x) is expanded in terms of ω, the following is obtained:

f(x) =O

(
1
ω3

)
︸ ︷︷ ︸
∞

+ C−2(x)
ω2︸ ︷︷ ︸
∞

+ C−1(x)
ω︸ ︷︷ ︸
∞

+C0(x) +C1(x)ω︸ ︷︷ ︸
0

+O(ω2)︸ ︷︷ ︸
0

(7)

The positive powers of ω are zero. If there are any negative powers of ω, then the result of the35

limit is infinity, otherwise the limit is equal to lim
x→∞

C0(x). The expression C0(x) is always simpler36

than original f(x), same is true for limits, arising in the rewrite stage (3), so the algorithm37

converges. A proof of this and further details on the algorithm are given in Gruntz’s PhD38

thesis [7].39

2 SERIES40

2.1 Series Expansion41

SymPy is able to calculate the symbolic series expansion of an arbitrary series or expression42

involving elementary and special functions and multiple variables. For this it has two different43

implementations: the series method and Ring Series.44

The first approach stores a series as an instance of the Expr class. Each function has its45

specific implementation of its expansion, which is able to evaluate the Puiseux series expansion46

about a specified point. For example, consider a Taylor expansion about 0:47

2/16

>>> series(sin(x+y) + cos(x*y), x, 0, 2)48

1 + sin(y) + x*cos(y) + O(x**2)49

The newer and much faster approach called Ring Series makes use of the fact that a truncated50

Taylor series is simply a polynomial. Correspondingly, they may be represented by sparse51

polynomials which perform well in a under a wide range of cases. Ring Series also gives the user52

the freedom to choose the type of coefficients to use, resulting in faster operations on certain53

types.54

For this, several low-level methods for expansion of trigonometric, hyperbolic and other55

elementary operations (like series inversion, calculating the nth root, etc.) are implemented56

using variants of the Newton Method [Brent and Zimmermann]. All these support Puiseux series57

expansion. The following example demonstrates the use of an elementary function that calculates58

the Taylor expansion of the sine of a series.59

>>> from sympy.polys.ring_series import rs_sin60

>>> R, t = ring('t', QQ)61

>>> rs_sin(t**2 + t, t, 5)62

-1/2*t**4 - 1/6*t**3 + t**2 + t63

The function sympy.polys.rs_series makes use of these elementary functions to expand64

an arbitrary SymPy expression. It does so by following a recursive strategy of expanding the65

lowermost functions first and then composing them recursively to calculate the desired expansion.66

Currently, it only supports expansion about 0 and is under active development. Ring Series is67

several times faster than the default implementation with the speed difference increasing with68

the size of the series. The sympy.polys.rs_series takes as input any SymPy expression and69

hence there is no need to explicitly create a polynomial ring. An example demonstrating its use:70

>>> from sympy.polys.ring_series import rs_series71

>>> from sympy.abc import a, b72

>>> rs_series(sin(a + b), a, 4)73

-1/2*(sin(b))*a**2 + (sin(b)) - 1/6*a**3*(cos(b)) + a*(cos(b))74

2.2 Formal Power Series75

SymPy can be used for computing the formal power series of a function. The implementation76

is based on the algorithm described in the paper on formal power series [8]. The advantage of77

this approach is that an explicit formula for the coefficients of the series expansion is generated78

rather than just computing a few terms.79

The following example shows how to use fps:80

>>> f = fps(sin(x), x, x0=0)81

>>> f.truncate(6)82

x - x**3/6 + x**5/120 + O(x**6)83

>>> f[15]84

-x**15/130767436800085

2.3 Fourier Series86

SymPy provides functionality to compute Fourier series of a function using the fourier_series87

function:88

>>> L = symbols('L')89

>>> expr = 2 * (Heaviside(x/L) - Heaviside(x/L - 1)) - 190

>>> f = fourier_series(expr, (x, 0, 2*L))91

>>> f.truncate(3)92

4*sin(pi*x/L)/pi + 4*sin(3*pi*x/L)/(3*pi) + 4*sin(5*pi*x/L)/(5*pi)93

3/16

3 LOGIC94

SymPy supports construction and manipulation of boolean expressions through the sympy.logic95

module. SymPy symbols can be used as propositional variables and subsequently be replaced96

with True or False values. Many functions for manipulating boolean expressions have been97

implemented in the logic module.98

3.1 Constructing boolean expressions99

A boolean variable can be declared as a SymPy Symbol. Python operators &, | and ~ are100

overridden when using SymPy objects to use the SymPy functionality for logical And, Or, and101

Not. Other logic functions are also integrated into SymPy, including Xor and Implies, which are102

constructed with ˆ and >>, respectively. Expressions can therefore be constructed either by using103

the shortcut operator notation or by directly creating the relevant objects: And(), Or(), Not(),104

Xor(), Implies(), Nand(), Nor(), etc.:105

>>> e = (x & y) | z106

>>> e.subs({x: True, y: True, z: False})107

True108

3.2 CNF and DNF109

Any boolean expression can be converted to conjunctive normal form, disjunctive normal form,110

or negation normal form. The API also exposes methods to check if a boolean expression is in111

any of the aforementioned forms.112

>>> from sympy.logic.boolalg import is_dnf, is_cnf113

>>> to_cnf((x & y) | z)114

And(Or(x, z), Or(y, z))115

>>> to_dnf(x & (y | z))116

Or(And(x, y), And(x, z))117

>>> is_cnf((x | y) & z)118

True119

>>> is_dnf((x & y) | z)120

True121

3.3 Simplification and Equivalence122

The sympy.logicmodule supports simplification of given boolean expression by making deductions123

from the expression. Equivalence of two logical expressions can also be checked. In the case of124

equivalence, the function bool_map can be used to show which variables of the first expression125

correspond to which variables of the second one.126

>>> a, b, c = symbols('a b c')127

>>> e = a & (~a | ~b) & (a | c)128

>>> simplify(e)129

And(Not(b), a)130

>>> e1 = a & (b | c)131

>>> e2 = (x & y) | (x & z)132

>>> bool_map(e1, e2)133

(And(Or(b, c), a), {a: x, b: y, c: z})134

3.4 SAT solving135

The module also supports satisfiability (SAT) checking of a given boolean expression. If an136

expression is satisfiable, it is possible to return a variable assignment which satisfies it. The137

API also supports listing all possible assignments. The SAT solver has a clause learning DPLL138

algorithm implemented with a watch literal scheme and VSIDS heuristic [11].139

>>> satisfiable(a & (~a | b) & (~b | c) & ~c)140

False141

>>> satisfiable(a & (~a | b) & (~b | c) & c)142

{a: True, b: True, c: True}143

4/16

4 DIOPHANTINE EQUATIONS144

Diophantine equations play a central role in number theory. A Diophantine equation has the145

form, f(x1,x2, . . . ,xn) = 0 where n ≥ 2 and x1,x2, . . . ,xn are integer variables. If there are n146

integers a1,a2, . . . ,an such that x1 = a1,x2 = a2, . . . ,xn = an satisfies the above equation, the147

equation is said to be solvable.148

Currently, the following five types of Diophantine equations can be solved using SymPy’s149

Diophantine module (a1, . . . ,an+1, a, b, c, d, e, f , and k are explicitly given rational constants):150

• Linear Diophantine equations: a1x1 +a2x2 + · · · +anxn = b151

• General binary quadratic equation: ax2 + bxy+ cy2 +dx+ey+f = 0152

• Homogeneous ternary quadratic equation: ax2 + by2 + cz2 +dxy+eyz+fzx= 0153

• Extended Pythagorean equation: a1x
2
1 +a2x

2
2 + · · · +anx

2
n = an+1x

2
n+1154

• General sum of squares: x2
1 +x2

2 + · · · +x2
n = k155

The diophantine function factors the equation it is given (if possible), solves each factor156

separately, and combines the results to give a final solution set. The following examples illustrate157

some of the basic functionalities of the Diophantine module.158

>>> from sympy.solvers.diophantine import *159

>>> diophantine(2*x + 3*y - 5)160

set([(3*t_0 - 5, -2*t_0 + 5)])161

162

>>> diophantine(2*x + 4*y - 3)163

set()164

165

>>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)166

set([(2, 1), (5, 1)])167

168

>>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)169

set([(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)])170

171

>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)172

set([(-16*p**2 + 28*p*q + 20*q**2,173

3*p**2 + 38*p*q - 25*q**2,174

4*p**2 - 24*p*q + 68*q**2)])175

176

>>> x1, x2, x3, x4, x5, x6 = symbols('x1, x2, x3, x4, x5, x6')177

>>> diophantine(9*x1**2 + 16*x2**2 + x3**2 + 49*x4**2 + 4*x5**2 - 25*x6**2)178

set([(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5,179

420*t2*t5, 60*t3*t5, 210*t4*t5,180

42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 + 42*t5**2)])181

182

>>> a, b, c, d = symbols('a:d')183

>>> diophantine(a**2 + b**2 + c**2 + d**2 - 23)184

set([(2, 3, 3, 1)])185

5 SETS186

SymPy supports representation of a wide variety of mathematical sets. This is achieved by first187

defining abstract representations of atomic set classes and then combining and transforming188

them using various set operations.189

Each of the set classes inherits from the base class Set and defines methods to check190

membership and calculate unions, intersections, and set differences. When these methods are191

not able to evaluate to atomic set classes, they are represented as abstract unevaluated objects.192

SymPy has the following atomic set classes:193

5/16

• EmptySet represents the empty set ∅.194

• UniversalSet is an abstract “universal set” of which everything is a member. The union of195

the universal set with any set gives the universal set and the intersection gives the other196

set itself.197

• FiniteSet is functionally equivalent to Python’s built in set object. Its members can be198

any SymPy object including other sets.199

• Integers represents the set of integers Z.200

• Naturals represents the set of natural numbers N, i.e., the set of positive integers.201

• Naturals0 represents the set of whole numbers N0, which are all the non-negative integers.202

• Range represents a range of integers. A range is defined by specifying a start value, an end203

value, and a step size. The enumeration of a Range object is functionally equivalent to204

Python’s range except it supports infinite endpoints, allowing the representation of infinite205

ranges.206

• Interval represents an interval of real numbers. It is defined by giving the start and the207

end points and by specifying if the interval is open or closed on the respective ends.208

Other than unevaluated classes of Union, Intersection, and Complement operations, SymPy209

has the following set classes.210

• ProductSet defines the Cartesian product of two or more sets. The product set is useful211

when representing higher dimensional spaces. For example, to represent a three-dimensional212

space, SymPy uses the Cartesian product of three real sets.213

• ImageSet represents the image of a function when applied to a particular set. The image214

set of a function F with respect to a set S is {F (x) | x ∈ S}. SymPy uses image sets to215

represent sets of infinite solutions of equations such as sin(x) = 0.216

• ConditionSet represents a subset of a set whose members satisfy a particular condition.217

The subset of set S given by the condition H is {x |H(x),x ∈ S}. SymPy uses condition218

sets to represent the set of solutions of equations and inequalities, where the equation or219

the inequality is the condition and the set is the domain over which it is being solved.220

A few other classes are implemented as special cases of the classes described above. The set of221

real numbers, Reals, is implemented as a special case of Interval. ComplexRegion is implemented222

as a special case of ImageSet. ComplexRegion supports both polar and rectangular representation223

of regions on the complex plane.224

6 STATISTICS225

The sympy.stats module provides random variable types and methods for computing of statistical226

properties of expressions involving random variables, which can be either continuous or discrete,227

the latter ones being further divided into finite and infinite. The variables are associated with228

probability densities on corresponding domains and internally defined in terms of probability229

spaces. Apart from the possibility of defining the random variables from user supplied density230

distribution, SymPy provides definitions of most common distributions, including Uniform,231

Poisson, Normal, Binomial, Bernoulli, and many others.232

Properties of random expressions can be calculated using, e.g., expectation (abbreviated E)233

and variance to calculate expectation and variance. Internally, these functions generate integrals234

and summations, which are automatically evaluated. The evaluation can be suppressed using235

evaluate=False keyword argument.236

Conditions on random variables can be defined with inequalities, equalities, and logical237

operators and their overall probabilities are obtained using P. The features can be illustrated on238

a model of two dice throws:239

6/16

>>> from sympy.stats import Die, P, E240

>>> X, Y = Die("X"), Die("Y")241

>>> P(Eq(X, 6) & Eq(Y, 6))242

1/36243

>>> P(X>Y)244

5/12245

The conditions can also be supplied as a second parameter to E, P, and other methods to calculate246

the property given the condition:247

>>> E(X, X+Y<5)248

5/3249

Using the facilities of the sympy.stats module, one can, for example, calculate the well known250

properties of maxwellian velocity distribution251

>>> from sympy.stats import Maxwell, density252

>>> kT, m, x = symbols("kT m x", positive=True)253

>>> v = Maxwell("v", sqrt(kT/m))254

>>> E(v) # mean velocity255

2*sqrt(2)*sqrt(kT)/(sqrt(pi)*sqrt(m))256

>>> E(v, evaluate=False) # unevaluated mean velocity257

Integral(sqrt(2)*m**(3/2)*v**3*exp(-m*v**2/(2*kT))/(sqrt(pi)*kT**(3/2)),258

(v, 0, oo))259

>>> E(m*v**2/2) # mean energy260

3*kT/2261

>>> solve(density(v)(x).diff(x), x)[0] # most probable velocity262

sqrt(2)*sqrt(kT)/sqrt(m)263

More information on the sympy.stats module can be found in [13].264

7 CATEGORY THEORY265

SymPy includes a module for dealing with categories—abstract mathematical objects representing266

classes of structures as classes of objects (points) and morphisms (arrows) between the objects.267

The module was designed with the following two goals in mind:268

1. automatic typesetting of diagrams given by a collection of objects and of morphisms269

between them, and270

2. specification and semi-automatic derivation of properties using commutative diagrams.271

As of version 1.0, SymPy only implements the first goal, while a partially working draft272

of implementation of the second goal is available at https://github.com/scolobb/sympy/tree/273

ct4-commutativity.274

In order to achieve the two goals, the module sympy.categories defines several classes275

representing some of the essential concepts: objects, morphisms, categories, and diagrams. In276

category theory, the inner structure of objects is often discarded in the favor of studying the277

properties of morphisms, so the class Object is essentially a synonym of the class Symbol. There278

are several morphism classes which do not have a particular internal structure either, though an279

exception is CompositeMorphism, which essentially stores a list of morphisms.280

The class Diagram captures the properties of morphisms. This class stores a family of281

morphisms, the corresponding source and target objects, and, possibly, some properties of the282

morphisms. Generally, no restrictions are imposed on what the properties may be—for example,283

one might use strings of the form “forall”, “exists”, “unique”, etc. Furthermore, the morphisms284

of a diagram are grouped into premises and conclusions in order to be able to represent logical285

implications of the form “for a collection of morphisms P with properties p :P →Ω (the premises),286

there exists a collection of morphisms C with properties c :C→ Ω (the conclusions)”, where Ω is287

7/16

https://github.com/scolobb/sympy/tree/ct4-commutativity
https://github.com/scolobb/sympy/tree/ct4-commutativity
https://github.com/scolobb/sympy/tree/ct4-commutativity

the universal collection of properties. Finally, the class Category includes a collection of diagrams288

which are deemed commutative and which therefore define the properties of this category.289

Automatic typesetting of diagrams takes a Diagram and produces LATEX code using the Xy-pic290

package. Typesetting is done in two stages: layout and generation of Xy-pic code. The layout291

stage is taken care of by the class DiagramGrid, which takes a Diagram and lays out the objects292

in a grid, trying to reduce the average length of the arrows in the final picture. By default,293

DiagramGrid uses a series of triangle-based heuristics to produce a rectangular grid. A linear294

layout can also be imposed. Furthermore, groups of objects can be given; in this case, the groups295

will be treated as atomic cells, and the member objects will be typeset independently of the296

other objects.297

The second phase of diagram typesetting consists in actually drawing the picture and is298

carried out by the class XypicDiagramDrawer. An example of a diagram automatically typeset by299

DiagramgGrid and XypicDiagramDrawer in given in Figure 1.

A
f
//
h2

))lA,,
nA
MM B

g

��

D
k
oo

h

}}

h1

�� lD
��

nD

ll

C
lC
MMnC

ll

Figure 1. An automatically typeset commutative diagram

300

As far as the second main goal of the module is concerned, the principal idea consists in301

automatically deciding whether a diagram is commutative or not, given a collection of “axioms”:302

diagrams known to be commutative. The implementation is based on graph embeddings (injective303

maps): whenever an embedding of a commutative diagram into a given diagram is found, one304

concludes that the subdiagram is commutative. Deciding commutativity of the whole diagram is305

therefore based (theoretically) on finding a “cover” of the target diagram by embeddings of the306

axioms. The naïve implementation proved to be prohibitively slow; a better optimized version is307

therefore in order, as well as application of heuristics.308

8 SYMPY GAMMA309

SymPy Gamma is a simple web application that runs on Google App Engine. It executes and310

displays the results of SymPy expressions as well as additional related computations, in a fashion311

similar to that of Wolfram|Alpha. For instance, entering an integer will display its prime factors,312

digits in the base-10 expansion, and a factorization diagram. Entering a function will display its313

docstring; in general, entering an arbitrary expression will display its derivative, integral, series314

expansion, plot, and roots.315

SymPy Gamma also has several features beyond just computing the results using SymPy.316

• SymPy Gamma displays integration and differentiation steps in detail, which can be viewed317

in Figure 2:318

8/16

319

Figure 2. Integral steps of tan(x)320

• SymPy Gamma displays the factor tree diagrams for different numbers.321

• SymPy Gamma saves user search queries, and offers many such similar features for free,322

which Wolfram|Alpha only offers to its paid users.323

Every input query from the user on SymPy Gamma is first parsed by its own parser capable of324

handling several different forms of function names which SymPy as a library does not support.325

For instance, SymPy Gamma supports queries like sin x, whereas SymPy will only recognise326

sin(x).327

This parser converts the input query to the equivalent SymPy readable code, which is then328

processed by SymPy, and the result is finally printed with the built-in LATEX output and rendered329

by the SymPy Gamma web application.330

9 SYMPY LIVE331

SymPy Live is an online Python shell, which uses the Google App Engine to executes SymPy332

code. It is integrated in the SymPy documentation examples at http://docs.sympy.org.333

This is accomplished by providing a HTML/JavaScript GUI for entering source code and334

visualization of output, and a server that evaluates the requested source code. It is an interactive335

AJAX shell that runs SymPy code using Python on the server.336

9/16

http://docs.sympy.org

10 COMPARISON WITH MATHEMATICA337

Wolfram Mathematica is a popular proprietary CAS that features highly advanced algorithms,338

has a core written in C++ [16], and interprets its own programming language, Wolfram Language.339

Analogous to Lisp S-expressions, Mathematica uses its own style of M-expressions, which340

are arrays of either atoms or other M-expressions. The first element of the expression identifies341

the type of the expression and is indexed by zero, and the first argument is indexed starting342

with one. In SymPy, expression arguments are stored in a Python tuple (that is, an immutable343

array), while the expression type is identified by the type of the object storing the expression.344

Mathematica can associate attributes to its atoms. Attributes may define mathematical345

properties and behavior of the nodes associated to the atom. In SymPy, the usage of static class346

fields is roughly similar to Mathematica’s attributes, though other programming patterns may347

also be used to achieve an equivalent behavior such as class inheritance.348

Unlike SymPy, Mathematica’s expressions are mutable: one can change parts of the expression349

tree without the need of creating a new object. The mutability of Mathematica expressions350

allows for a lazy updating of any references to a given data structure.351

Products in Mathematica are determined by some built in node types, such as Times, Dot,352

and others. Times is a representation of the * operator, and is always meant to represent a353

commutative product operator. The other notable product is Dot, which represents the . operator.354

This product represents matrix multiplication. It is not commutative. Unlike Mathematica,355

SymPy determines commutativity with respect to multiplication from the expression type of the356

factors. Mathematica puts the Orderless attribute on the expression type.357

Regarding associative expressions, SymPy handles associativity of sums and products by358

automatically flattening them, Mathematica specifies the Flat attribute on the expression type.359

Mathematica relies heavily on pattern matching—even the so-called equivalent of function360

declaration is in reality the definition of a pattern generating an expression tree transformation361

on input expressions. Mathematica’s pattern matching is sensitive to associative, commutative,362

and one-identity properties of its expression tree nodes. SymPy has various ways to perform363

pattern matching. All of them play a lesser role in the CAS than in Mathematica and are364

basically available as a tool to rewrite expressions. The differential equation solver in SymPy365

somewhat relies on pattern matching to identify differential equation types, but it is envisaged to366

replace that strategy with analysis of Lie symmetries in the future. Mathematica’s real advantage367

is the ability to add (at runtime) new overloading to the expression builder or specific subnodes.368

Consider for example:369

In[1]:= Unprotect[Plus]370

Out[1]= {Plus}371

372

In[2]:= Sin[x_]^2 + Cos[y_]^2 := 1373

374

In[3]:= x + Sin[t]^2 + y + Cos[t]^2375

Out[3]= 1 + x + y376

This expression in Mathematica defines a substitution rule that overloads the functionality of377

the Plus node (the node for additions in Mathematica). A symbol with a trailing underscore is378

treated as a wildcard. Although one may wish to keep this identity unevaluated, this example379

clearly illustrates the potential to define one’s own immediate transformation rules. In SymPy,380

the operations constructing the addition node in the expression tree are Python class constructors381

and cannot be modified at runtime.1 The way SymPy deals with extending the missing runtime382

overloadability functionality is by subclassing the node types: subclasses may redefine the class383

constructor to yield the proper extended functionality.384

Unlike SymPy, Mathematica does not support type inheritance or polymorphism [4]. SymPy385

relies heavily on class inheritance, but for the most part, class inheritance is used to make sure386

that SymPy objects inherit the proper methods and implement the basic hashing system.387

1Nonetheless, Python supports monkey patching but it is a discouraged programming pattern.

10/16

While Mathematica interprets nested lists as matrices whenever the sublists have the same388

length, matrices in SymPy are a type in their own right, allowing ordinary operators and functions389

(like multiplication and exponentiation) to be used as they traditionally are in mathematics.390

>>> exp(Matrix([[1, 1],[0, 2]])) * Matrix([a, b])391

Matrix([392

[E*a + b*(-E + exp(2))],393

[b*exp(2)]])394

Using the standard multiplication in Mathematica performs an element-wise product and395

calling the exponential function Exp on a matrix returns an element-wise exponentiation of its396

elements.397

Unevaluated expressions in Mathematica can be achieved in various ways, most commonly398

with the HoldForm or Hold nodes, that block the evaluation of subnodes by the parser. Such a399

node cannot be expressed in Python because of greedy evaluation. Whenever needed in SymPy,400

it is necessary to add the parameter evaluate=False to all subnodes.401

In Mathematica, the operator == returns a boolean whenever it is able to immediately evaluate402

the truth of the equality, otherwise it returns an Equal expression. In SymPy, == means structural403

equality and is always guaranteed to return a boolean expression. To express a mathematical404

equality in SymPy it is necessary to explicitly construct an instance of the Equality class.405

SymPy, in accordance with Python (and unlike the usual programming convention), uses **406

to express the power operator, while Mathematica uses the more common ^.407

SymPy’s use of floating-point numbers is similar to that of most other CASs, including408

Maple and Maxima. By contrast, Mathematica uses a form of significance arithmetic [14]409

for approximate numbers. This offers further protection against numerical errors, although it410

comes with its own set of problems (for a critique of significance arithmetic, see Fateman [4]).411

Internally, SymPy’s evalf method works similarly to Mathematica’s significance arithmetic, but412

the semantics are isolated from the rest of the system.413

11 OTHER PROJECTS THAT USE SYMPY414

There are several projects that use SymPy as a library for implementing a part of their function-415

ality. Some of them are listed below:416

• Cadabra: Cadabra is a CAS designed specifically for the resolution of problems encountered417

in field theory.418

• Octave Symbolic: The Octave-Forge Symbolic package adds symbolic calculation features419

to GNU Octave. These include common CAS tools such as algebraic operations, calculus,420

equation solving, Fourier and Laplace transforms, variable precision arithmetic, and other421

features.422

• SymPy.jl: Provides a Julia interface to SymPy using PyCall.423

• Mathics: Mathics is a free, general-purpose online CAS featuring Mathematica compatible424

syntax and functions. It is backed by highly extensible Python code, relying on SymPy for425

most mathematical tasks.426

• Mathpix: An iOS App, that detects handwritten math as input, and uses SymPy Gamma427

to evaluate the math input and generate the relevant steps to solve the problem.428

• IKFast: IKFast is a robot kinematics compiler provided by OpenRAVE. It analytically429

solves robot inverse kinematics equations and generates optimized C++ files. It uses430

SymPy for its internal symbolic mathematics.431

• Sage: A CAS, visioned to be a viable free open source alternative to Magma, Maple,432

Mathematica and MATLAB. Sage includes many open source mathematical libraries,433

including SymPy.434

11/16

http://cadabra.science/index.html
http://octave.sourceforge.net/symbolic/
https://github.com/jverzani/SymPy.jl
https://mathics.github.io/
http://mathpix.com/
http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://openrave.org/
http://www.sagemath.org/

• SageMathCloud: SageMathCloud is a web-based cloud computing and course manage-435

ment platform for computational mathematics.436

• PyDy: Multibody Dynamics with Python.437

• galgebra: Geometric algebra (previously sympy.galgebra).438

• yt: Python package for analyzing and visualizing volumetric data (yt.units uses SymPy).439

• SfePy: Simple finite elements in Python, see section 11.1.440

• Quameon: Quantum Monte Carlo in Python.441

• Lcapy: Experimental Python package for teaching linear circuit analysis.442

• Quantum Programming in Python: Quantum 1D Simple Harmonic Oscillator and443

Quantum Mapping Gate.444

• LaTeX Expression project: Easy LATEX typesetting of algebraic expressions in symbolic445

form with automatic substitution and result computation.446

• Symbolic statistical modeling: Adding statistical operations to complex physical447

models.448

11.1 SfePy449

SfePy (Simple finite elements in Python), cf. [3], is a Python package for solving partial450

differential equations (PDEs) in 1D, 2D and 3D by the finite element (FE) method [17]. SymPy451

is used within this package mostly for code generation and testing, namely:452

• generation of the hierarchical FE basis module, involving generation and symbolic differenti-453

ation of 1D Legendre and Lobatto polynomials, constructing the FE basis polynomials [15]454

and generating the C code;455

• generation of symbolic conversion formulas for various groups of elastic constants [6]:456

provide any two of the Young’s modulus, Poisson’s ratio, bulk modulus, Lamé’s first457

parameter, shear modulus (Lamé’s second parameter) or longitudinal wave modulus and458

get the other ones;459

• simple physical unit conversions, generation of consistent unit sets;460

• testing FE solutions using method of manufactured (analytical) solutions: the differential461

operator of a PDE is symbolically applied and a symbolic right-hand side is created,462

evaluated in quadrature points, and subsequently used to obtain a numerical solution that463

is then compared to the analytical one;464

• testing accuracy of 1D, 2D and 3D numerical quadrature formulas (cf. [1]) by generating465

polynomials of suitable orders, integrating them, and comparing the results with those466

obtained by the numerical quadrature.467

12 TENSORS468

Ongoing work to provide the capabilities of tensor computer algebra has so far produced the469

tensor module. It comprises three submodules whose purposes are quite different: sympy.470

tensor.indexed and sympy.tensor.indexed_methods support indexed symbols, sympy.tensor.471

array contains facilities to operate on symbolic N -dimensional arrays, and finally sympy.tensor.472

tensor is used to define abstract tensors. The abstract tensors submodule is inspired by xAct [10]473

and Cadabra [12]. Canonicalization based on the Butler-Portugal [9] algorithm is supported in474

SymPy. Tensor support in SymPy is currently limited to polynomial tensor expressions.475

12/16

https://cloud.sagemath.com
http://www.pydy.org/
https://github.com/brombo/galgebra
http://yt-project.org/
http://sfepy.org/
http://quameon.sourceforge.net/
http://lcapy.elec.canterbury.ac.nz/
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1072&context=physsp/
http://mech.fsv.cvut.cz/~stransky/software/latexexpr/doc/
https://www.researchgate.net/publication/260585491_Symbolic_Statistics_with_SymPy/
http://sfepy.org/

13 NUMERICAL SIMPLIFICATION476

The nsimplify function in SymPy (a wrapper of identify in mpmath) attempts to find a simple477

symbolic expression that evaluates to the same numerical value as the given input. It works478

by applying a few simple transformations (including square roots, reciprocals, logarithms and479

exponentials) to the input and, for each transformed value, using the PSLQ algorithm [5] to480

search for a matching algebraic number or optionally a linear combination of user-provided base481

constants (such as π).482

>>> t = 1 / (sin(pi/5)+sin(2*pi/5)+sin(3*pi/5)+sin(4*pi/5))**2483

>>> nsimplify(t)484

-2*sqrt(5)/5 + 1485

>>> nsimplify(pi, tolerance=0.01)486

22/7487

>>> nsimplify(1.783919626661888, [pi], tolerance=1e-12)488

pi/(-1/3 + 2*pi/3)489

14 EXAMPLES490

14.1 Simplification491

• expand:492

>>> expand((x + y)**3)493

x**3 + 3*x**2*y + 3*x*y**2 + y**3494

• factor:495

>>> factor(x**3 + 3*x**2*y + 3*x*y**2 + y**3)496

(x + y)**3497

• collect:498

>>> collect(y*x**2 + 3*x**2 - x*y + x - 1, x)499

x**2*(y + 3) + x*(-y + 1) - 1500

• cancel:501

>>> cancel((x**2 + 2*x + 1)/(x**2 - 1))502

(x + 1)/(x - 1)503

• apart:504

>>> apart((x**3 + 4*x - 1)/(x**2 - 1))505

x + 3/(x + 1) + 2/(x - 1)506

• trigsimp:507

>>> trigsimp(cos(x)**2*tan(x) - sin(2*x))508

-sin(2*x)/2509

14.2 Polynomials510

• Factorization:511

>>> t = symbols('t')512

>>> f = (2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 -513

... 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t -514

... 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 +515

13/16

... y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 -516

... 2*z*t**3)517

>>> factor(f)518

(t**2*z**3 - t**2 + 47*x*y)*(2*t*z + 45*x**3 - 9*y**3 - y**2 +519

3*z**3)520

• Gröbner bases:521

>>> x0, x1, x2 = symbols('x:3')522

>>> I = [x0 + 2*x1 + 2*x2 - 1,523

... x0**2 + 2*x1**2 + 2*x2**2 - x0,524

... 2*x0*x1 + 2*x1*x2 - x1]525

>>> groebner(I, order='lex')526

GroebnerBasis([7*x0 - 420*x2**3 + 158*x2**2 + 8*x2 - 7,527

7*x1 + 210*x2**3 - 79*x2**2 + 3*x2,528

84*x2**4 - 40*x2**3 + x2**2 + x2], x0, x1, x2, domain='ZZ',529

order='lex')530

• Root isolation:531

>>> f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20532

>>> intervals(f, all=True, eps=0.001)533

([],534

[((-425/1024 - 625*I/1024, -1485/3584 - 2185*I/3584), 1),535

((-425/1024 + 2185*I/3584, -1485/3584 + 625*I/1024), 1),536

((3175/1792 - 2605*I/1792, 1815/1024 - 10415*I/7168), 1),537

((3175/1792 + 10415*I/7168, 1815/1024 + 2605*I/1792), 1)])538

14.3 Solvers539

• Single solution:540

>>> solveset(x - 1, x)541

{1}542

• Finite solution set, quadratic equation:543

>>> solveset(x**2 - pi**2, x)544

{-pi, pi}545

• No solution:546

>>> solveset(1, x)547

EmptySet()548

• Interval solution:549

>>> solveset(x**2 - 3 > 0, x, domain=S.Reals)550

(-oo, -sqrt(3)) U (sqrt(3), oo)551

• Infinitely many solutions:552

>>> solveset(x - x, x, domain=S.Reals)553

(-oo, oo)554

>>> solveset(x - x, x, domain=S.Complexes)555

S.Complexes556

14/16

• Linear systems (linsolve)557

>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])558

>>> b = Matrix([3, 6, 9])559

>>> linsolve((A, b), x, y, z)560

{(-1, 2, 0)}561

>>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))562

{(-y - 1, y, 2)}563

Below are examples of solve applied to problems not yet handled by solveset.564

• Nonlinear (multivariate) system of equations (the intersection of a circle and a parabola):565

>>> solve([x**2 + y**2 - 16, 4*x - y**2 + 6], x, y)566

[(-2 + sqrt(14), -sqrt(-2 + 4*sqrt(14))),567

(-2 + sqrt(14), sqrt(-2 + 4*sqrt(14))),568

(-sqrt(14) - 2, -I*sqrt(2 + 4*sqrt(14))),569

(-sqrt(14) - 2, I*sqrt(2 + 4*sqrt(14)))]570

• Transcendental equations:571

>>> solve((x + log(x))**2 - 5*(x + log(x)) + 6, x)572

[LambertW(exp(2)), LambertW(exp(3))]573

>>> solve(x**3 + exp(x))574

[-3*LambertW((-1)**(2/3)/3)]575

14.4 Matrices576

• Matrix expressions577

>>> m, n, p = symbols('m n p', integer=True)578

>>> R = MatrixSymbol('R', m, n)579

>>> S = MatrixSymbol('S', n, p)580

>>> T = MatrixSymbol('T', m, p)581

>>> U = R*S + 2*T582

>>> U.shape583

(m, p)584

>>> U[0, 1]585

2*T[0, 1] + Sum(R[0, _k]*S[_k, 1], (_k, 0, n - 1))586

• Block Matrices587

>>> n, m, l = symbols('n m l')588

>>> X = MatrixSymbol('X', n, n)589

>>> Y = MatrixSymbol('Y', m ,m)590

>>> Z = MatrixSymbol('Z', n, m)591

>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])592

>>> B593

Matrix([594

[X, Z],595

[0, Y]])596

>>> B[0, 0]597

X[0, 0]598

>>> B.shape599

(m + n, m + n)600

15/16

15 REFERENCES601

REFERENCES602

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with603

Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, NY, USA, ninth604

printing edition.605
[Brent and Zimmermann] Brent, R. P. and Zimmermann, P. Modern Computer Arithmetic.606

Cambridge University Press, version 0.5.1 edition.607
[3] Cimrman, R. (2014). SfePy - write your own FE application. In de Buyl, P. and Varoquaux,608

N., editors, Proceedings of the 6th European Conference on Python in Science (EuroSciPy609

2013), pages 65–70. http://arxiv.org/abs/1404.6391.610
[4] Fateman, R. J. (1992). A review of Mathematica. Journal of Symbolic Computation,611

13(5):545–579.612
[5] Ferguson, H. R. P., Bailey, D. H., and Arno, S. (1999). Analysis of PSLQ, an integer relation613

finding algorithm. Mathematics of Computation, 68(225):351–369.614
[6] Fung, Y. C. (1993). A first course in continuum mechanics. Pearson, third edition edition.615
[7] Gruntz, D. (1996). On Computing Limits in a Symbolic Manipulation System. PhD thesis,616

Swiss Federal Institute of Technology, Zürich, Switzerland.617
[8] Gruntz, D. and Koepf, W. (1993). Formal power series.618
[9] Manssur, L. R. U., Portugal, R., and Svaiter, B. F. (2002). Group-theoretic approach for619

symbolic tensor manipulation. International Journal of Modern Physics C, 13.620
[10] Martín-García, J. (2002-2016). xAct, efficient tensor computer algebra.621
[11] Moskewicz, M., Madigan, C., and Malik, S. (2008). Method and system for efficient622

implementation of boolean satisfiability. US Patent 7,418,369.623
[12] Peeters, K. (2007). Cadabra: a field-theory motivated symbolic computer algebra system.624

Computer Physics Communications.625
[13] Rocklin, M. and Terrel, A. R. (2012). Symbolic statistics with SymPy. Computing in Science626

and Engineering, 14.627
[14] Sofroniou, M. and Spaletta, G. (2005). Precise numerical computation. Journal of Logic628

and Algebraic Programming, 64(1):113–134.629
[15] Solin, P., Segeth, K., and Dolezel, I. (2003). Higher-Order Finite Element Methods. Chapman630

& Hall / CRC Press.631
[16] Wolfram, S. (2003). The Mathematica Book. Wolfram Media, Champaign, IL, USA, fifth632

edition.633
[17] Zienkiewicz, O., Taylor, R., and Zhu, J. (2013). The Finite Element Method: Its Basis and634

Fundamentals. Butterworth-Heinemann, seventh edition edition.635

16/16

	Limits: The Gruntz Algorithm
	Series
	Series Expansion
	Formal Power Series
	Fourier Series

	Logic
	Constructing boolean expressions
	CNF and DNF
	Simplification and Equivalence
	SAT solving

	Diophantine Equations
	Sets
	Statistics
	Category Theory
	SymPy Gamma
	SymPy Live
	Comparison with Mathematica
	Other Projects that use SymPy
	SfePy

	Tensors
	Numerical simplification
	Examples
	Simplification
	Polynomials
	Solvers
	Matrices

	References
	References

