
SUPPLEMENTARY MATERIALS: SYMPY: SYMBOLIC
COMPUTING IN PYTHON

AARON MEURER∗, CHRISTOPHER P. SMITH† , MATEUSZ PAPROCKI‡ , ONDŘEJ
ČERTÍK§ , MATTHEW ROCKLIN¶, AMIT KUMAR‖, SERGIU IVANOV#, JASON K.
MOORE††, SARTAJ SINGH‡‡, THILINA RATHNAYAKE§§, SEAN VIG¶¶, BRIAN E.

GRANGER‖‖, RICHARD P. MULLER##, FRANCESCO BONAZZI1, HARSH GUPTA2,
SHIVAM VATS3, FREDRIK JOHANSSON4, FABIAN PEDREGOSA5, MATTHEW J.

CURRY6, ASHUTOSH SABOO7, ISURU FERNANDO8, SUMITH9, ROBERT CIMRMAN10,
AND ANTHONY SCOPATZ11

As in the paper, all examples in the supplement assume that the following has
been run:
>>> from sympy import *
>>> x, y, z = symbols('x y z')

SM1. Limits: The Gruntz Algorithm. SymPy calculates limits using the
Gruntz algorithm, as described in [SM7]. The basic idea is as follows: any limit can

∗University of South Carolina, Columbia, SC 29201 (asmeurer@gmail.com).
†Polar Semiconductor, Inc., Bloomington, MN 55425 (smichr@gmail.com).
‡Continuum Analytics, Inc., Austin, TX 78701 (mattpap@gmail.com).
§Los Alamos National Laboratory, Los Alamos, NM 87545 (certik@lanl.gov).
¶Continuum Analytics, Inc., Austin, TX 78701 (mrocklin@gmail.com).
‖Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi 110042, India

(dtu.amit@gmail.com).
#Université Paris Est Créteil, 61 av. Général de Gaulle, 94010 Créteil, France (sergiu.ivanov@u-

pec.fr).
††University of California, Davis, Davis, CA 95616 (jkm@ucdavis.edu).
‡‡Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India (singhsar-

taj94@gmail.com).
§§University of Moratuwa, Bandaranayake Mawatha, Katubedda, Moratuwa 10400, Sri Lanka

(thilinarmtb.10@cse.mrt.ac.lk).
¶¶University of Illinois at Urbana-Champaign, Urbana, IL 61801 (sean.v.775@gmail.com).
‖‖California Polytechnic State University, San Luis Obispo, CA 93407 (ellisonbg@gmail.com).

##Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185
(rmuller@sandia.gov).

1Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am
Mühlenberg 1, 14424 Potsdam, Germany (francesco.bonazzi@mpikg.mpg.de).

2Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India (har-
gup@protonmail.com).

3Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India (shivam-
vats.iitkgp@gmail.com).

4INRIA Bordeaux-Sud-Ouest – LFANT project-team, 200 Avenue de la Vieille Tour, 33405 Tal-
ence, France (fredrik.johansson@gmail.com).

5INRIA – SIERRA project-team, 2 Rue Simone IFF, 75012 Paris, France (f@bianp.net).
6Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131

(mattjcurry@gmail.com).
7Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH 17B Bypass

Road, Zuarinagar, Sancoale, Goa 403726, India (ashutosh.saboo@gmail.com).
8University of Moratuwa, Bandaranayake Mawatha, Katubedda, Moratuwa 10400, Sri Lanka

(isuru.11@cse.mrt.ac.lk).
9Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India (sum-

ith@cse.iitb.ac.in).
10New Technologies – Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň,

Czech Republic (cimrman3@ntc.zcu.cz).
11University of South Carolina, Columbia, SC 29201 (scopatz@cec.sc.edu).

SM1

mailto:asmeurer@gmail.com
mailto:smichr@gmail.com
mailto:mattpap@gmail.com
mailto:certik@lanl.gov
mailto:mrocklin@gmail.com
mailto:dtu.amit@gmail.com
mailto:sergiu.ivanov@u-pec.fr
mailto:sergiu.ivanov@u-pec.fr
mailto:jkm@ucdavis.edu
mailto:singhsartaj94@gmail.com
mailto:singhsartaj94@gmail.com
mailto:thilinarmtb.10@cse.mrt.ac.lk
mailto:sean.v.775@gmail.com
mailto:ellisonbg@gmail.com
mailto:rmuller@sandia.gov
mailto:francesco.bonazzi@mpikg.mpg.de
mailto:hargup@protonmail.com
mailto:hargup@protonmail.com
mailto:shivamvats.iitkgp@gmail.com
mailto:shivamvats.iitkgp@gmail.com
mailto:fredrik.johansson@gmail.com
mailto:f@bianp.net
mailto:mattjcurry@gmail.com
mailto:ashutosh.saboo@gmail.com
mailto:isuru.11@cse.mrt.ac.lk
mailto:sumith@cse.iitb.ac.in
mailto:sumith@cse.iitb.ac.in
mailto:cimrman3@ntc.zcu.cz
mailto:scopatz@cec.sc.edu

be converted to a limit lim
x→∞

f(x) by substitutions like x→ 1
x . Then the subexpression

ω (that converges to zero as x→∞ faster than all other subexpressions) is identified
in f(x), and f(x) is expanded into a series with respect to ω. Any positive powers of
ω converge to zero (while negative powers indicate an infinite limit) and any constant
term independent of ω determines the limit. When a constant term still dependends
on x the Gruntz algorithm is applied again until a final numerical value is obtained
as the limit.

To determine the most rapidly varying subexpression, the comparability classes
must first be defined, by calculating L:

(SM1) L ≡ lim
x→∞

log |f(x)|
log |g(x)|

The relations <, >, and ∼ are defined as follows: f > g when L = ±∞ (it is said that
f is more rapidly varying than g, i.e., f goes to ∞ or 0 faster than g), f < g when
L = 0 (f is less rapidly varying than g) and f ∼ g when L 6= 0,±∞ (both f and g are
bounded from above and below by suitable integral powers of the other). Note that
if f > g, then f > gn for any n. Here are some examples of comparability classes:

2 < x < ex < ex2
< eex

2 ∼ 3 ∼ −5

x ∼ x2 ∼ x3 ∼ 1
x
∼ xm ∼ −x

ex ∼ e−x ∼ e2x ∼ ex+e−x

f(x) ∼ 1
f(x)

The Gruntz algorithm is now illustrated with the following example:

(SM2) f(x) = ex+2e−x

− ex + 1
x
.

The goal is to calculate lim
x→∞

f(x). First, the set of most rapidly varying subexpres-

sions is determined—the so-called mrv set. For (SM2), the mrv set {ex, e−x, ex+2e−x}
is obtained. These are all subexpressions of (SM2) and they all belong to the same
comparability class. This calculation can be done using SymPy as follows:
>>> from sympy.series.gruntz import mrv
>>> mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)[0].keys()
dict_keys([exp(x + 2*exp(-x)), exp(x), exp(-x)])

Next, an arbitrary item ω is taken from mrv that converges to zero for x → ∞.
The item ω = e−x is obtained. If such a term is not present in the mrv set (i.e., all
terms converge to infinity instead of zero), the relation f(x) ∼ 1

f(x) can be used.
The next step is to rewrite the mrv set in terms of ω: { 1

ω , ω,
1
ω e

2ω}. Then the
original subexpressions are substituted back into f(x) and expanded with respect
to ω:

(SM3) f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω +O(ω2)

SM2

Since ω is from the mrv set, then in the limit as x → ∞, ω → 0, and so 2ω +
O(ω2)→ 0 in (SM3):

(SM4) f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω +O(ω2)→ 2 + 1

x

Since the result (2 + 1
x) still depends on x, the above procedure is repeated until

just a value independent of x is obtained. This is the final limit. In the above case
the limit is 2, as can be verified by SymPy:
>>> limit(exp(x+2*exp(-x))-exp(x) + 1/x, x, oo)
2

In general, when f(x) is expanded in terms of ω, the following is obtained:

(SM5) f(x) = O

(
1
ω3

)
︸ ︷︷ ︸
∞

+ C−2(x)
ω2︸ ︷︷ ︸
∞

+ C−1(x)
ω︸ ︷︷ ︸
∞

+C0(x) + C1(x)ω︸ ︷︷ ︸
0

+O(ω2)︸ ︷︷ ︸
0

The positive powers of ω are zero. If there are any negative powers of ω, then the
result of the limit is infinity, otherwise the limit is equal to lim

x→∞
C0(x). The expression

C0(x) is simpler than f(x) and so the algorithm always converges. A proof of this
and further details on the algorithm are given in Gruntz’s PhD thesis [SM7].

SM2. Series.

SM2.1. Series Expansion. SymPy is able to calculate the symbolic series ex-
pansion of an arbitrary series or expression involving elementary and special functions
and multiple variables. For this it has two different implementations: the series
method and Ring Series.

The first approach stores a series as an instance of the Expr class. Each function
has its specific implementation of its expansion, which is able to evaluate the Puiseux
series expansion about a specified point. For example, consider a Taylor expansion
about 0:
>>> from sympy import symbols, series
>>> x, y = symbols('x, y')
>>> series(sin(x+y) + cos(x*y), x, 0, 2)
1 + sin(y) + x*cos(y) + O(x**2)

The newer and much faster approach called Ring Series makes use of the fact
that a truncated Taylor series is simply a polynomial. Correspondingly, they may
be represented by sparse polynomials which perform well in a under a wide range of
cases. Ring Series also gives the user the freedom to choose the type of coefficients to
use, resulting in faster operations on certain types.

For this, several low-level methods for expansion of trigonometric, hyperbolic and
other elementary operations (like series inversion, calculating the nth root, etc.) are
implemented using variants of the Newton Method [SM2]. All these support Puiseux
series expansion. The following example demonstrates the use of an elementary func-
tion that calculates the Taylor expansion of the sine of a series.
>>> from sympy import ring
>>> from sympy.polys.ring_series import rs_sin
>>> R, t = ring('t', QQ)
>>> rs_sin(t**2 + t, t, 5)
-1/2*t**4 - 1/6*t**3 + t**2 + t

SM3

The function sympy.polys.rs_series makes use of these elementary functions to
expand an arbitrary SymPy expression. It does so by following a recursive strategy
of expanding the lowermost functions first and then composing them recursively to
calculate the desired expansion. Currently, it only supports expansion about 0 and
is under active development. Ring Series is several times faster than the default
implementation with the speed difference increasing with the size of the series. The
sympy.polys.rs_series takes as input any SymPy expression and hence there is no
need to explicitly create a polynomial ring. An example demonstrating its use:
>>> from sympy.polys.ring_series import rs_series
>>> from sympy.abc import a, b
>>> from sympy import sin, cos
>>> rs_series(sin(a + b), a, 4)
-1/2*(sin(b))*a**2 + (sin(b)) - 1/6*a**3*(cos(b)) + a*(cos(b))

SM2.2. Formal Power Series. SymPy can be used for computing the formal
power series of a function. The implementation is based on the algorithm described
in the paper on formal power series [SM8]. The advantage of this approach is that an
explicit formula for the coefficients of the series expansion is generated rather than
just computing a few terms.

The following example shows how to use fps:
>>> f = fps(sin(x), x, x0=0)
>>> f.truncate(6)
x - x**3/6 + x**5/120 + O(x**6)
>>> f[15]
-x**15/1307674368000

SM2.3. Fourier Series. SymPy provides functionality to compute Fourier se-
ries of a function using the fourier_series function:
>>> L = symbols('L')
>>> expr = 2 * (Heaviside(x/L) - Heaviside(x/L - 1)) - 1
>>> f = fourier_series(expr, (x, 0, 2*L))
>>> f.truncate(3)
4*sin(pi*x/L)/pi + 4*sin(3*pi*x/L)/(3*pi) + 4*sin(5*pi*x/L)/(5*pi)

SM3. Logic. SymPy supports construction and manipulation of boolean expres-
sions through the sympy.logic module. SymPy symbols can be used as propositional
variables and subsequently be replaced with True or False values. Many functions for
manipulating boolean expressions have been implemented in the logic module.

SM3.1. Constructing boolean expressions. A boolean variable can be de-
clared as a SymPy Symbol. Python operators &, | and ~ are overridden when using
SymPy objects to use the SymPy functionality for logical And, Or, and Not. Other
logic functions are also integrated into SymPy, including Xor and Implies, which are
constructed with ˆ and >>, respectively. Expressions can therefore be constructed
either by using the shortcut operator notation or by directly creating the relevant
objects: And(), Or(), Not(), Xor(), Implies(), Nand(), Nor(), etc. »»»> reviews
>>> e = (x & y) | z
>>> e.subs({x: True, y: True, z: False})
True

SM3.2. CNF and DNF. Any boolean expression can be converted to conjunc-
tive normal form, disjunctive normal form, or negation normal form. The API also

SM4

exposes methods to check if a boolean expression is in any of the aforementioned
forms.
>>> from sympy.logic.boolalg import is_dnf, is_cnf
>>> to_cnf((x & y) | z)
And(Or(x, z), Or(y, z))
>>> to_dnf(x & (y | z))
Or(And(x, y), And(x, z))
>>> is_cnf((x | y) & z)
True
>>> is_dnf((x & y) | z)
True

SM3.3. Simplification and Equivalence. The sympy.logic module supports
simplification of given boolean expression by making deductions from the expression.
Equivalence of two logical expressions can also be checked. In the case of equivalence,
the function bool_map can be used to show which variables of the first expression
correspond to which variables of the second one.
>>> a, b, c = symbols('a b c')
>>> e = a & (~a | ~b) & (a | c)
>>> simplify(e)
And(Not(b), a)
>>> e1 = a & (b | c)
>>> e2 = (x & y) | (x & z)
>>> bool_map(e1, e2)
(And(Or(b, c), a), {a: x, b: y, c: z})

SM3.4. SAT solving. The module also supports satisfiability (SAT) checking
of a given boolean expression. If an expression is satisfiable, it is possible to return
a variable assignment which satisfies it. The API also supports listing all possible
assignments. The SAT solver has a clause learning DPLL algorithm implemented
with a watch literal scheme and VSIDS heuristic [SM11].
>>> satisfiable(a & (~a | b) & (~b | c) & ~c)
False
>>> satisfiable(a & (~a | b) & (~b | c) & c)
{a: True, b: True, c: True}

SM4. Diophantine Equations. Diophantine equations play a central role in
number theory. A Diophantine equation has the form, f(x1, x2, . . . , xn) = 0 where
n ≥ 2 and x1, x2, . . . , xn are integer variables. If there are n integers a1, a2, . . . , an

such that x1 = a1, x2 = a2, . . . , xn = an satisfies the above equation, the equation is
said to be solvable.

Currently, the following five types of Diophantine equations can be solved using
SymPy’s Diophantine module (a1, . . . , an+1, a, b, c, d, e, f , and k are explicitly given
rational constants):

• Linear Diophantine equations: a1x1 + a2x2 + · · · + anxn = b
• General binary quadratic equation: ax2 + bxy + cy2 + dx+ ey + f = 0
• Homogeneous ternary quadratic equation: ax2+by2+cz2+dxy+eyz+fzx = 0
• Extended Pythagorean equation: a1x

2
1 + a2x

2
2 + · · · + anx

2
n = an+1x

2
n+1

• General sum of squares: x2
1 + x2

2 + · · · + x2
n = k

The diophantine function factors the equation it is given (if possible), solves each
factor separately, and combines the results to give a final solution set. The following

SM5

examples illustrate some of the basic functionalities of the Diophantine module.
>>> from sympy.solvers.diophantine import *
>>> diophantine(2*x + 3*y - 5)
set([(3*t_0 - 5, -2*t_0 + 5)])

>>> diophantine(2*x + 4*y - 3)
set()

>>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
set([(2, 1), (5, 1)])

>>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)
set([(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)])

>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
set([(-16*p**2 + 28*p*q + 20*q**2,
3*p**2 + 38*p*q - 25*q**2,
4*p**2 - 24*p*q + 68*q**2)])

>>> x1, x2, x3, x4, x5, x6 = symbols('x1, x2, x3, x4, x5, x6')
>>> diophantine(9*x1**2 + 16*x2**2 + x3**2 + 49*x4**2 + 4*x5**2 - 25*x6**2)
set([(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5,
420*t2*t5, 60*t3*t5, 210*t4*t5,
42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 + 42*t5**2)])

>>> a, b, c, d = symbols('a:d')
>>> diophantine(a**2 + b**2 + c**2 + d**2 - 23)
set([(2, 3, 3, 1)])

SM5. Sets. SymPy supports representation of a wide variety of mathematical
sets. This is achieved by first defining abstract representations of atomic set classes
and then combining and transforming them using various set operations.

Each of the set classes inherits from the base class Set and defines methods to
check membership and calculate unions, intersections, and set differences. When these
methods are not able to evaluate to atomic set classes, they are represented as abstract
unevaluated objects.

SymPy has the following atomic set classes:
• EmptySet represents the empty set ∅.
• UniversalSet is an abstract “universal set” of which everything is a member.
The union of the universal set with any set gives the universal set and the
intersection gives the other set itself.

• FiniteSet is functionally equivalent to Python’s built in set object. Its mem-
bers can be any SymPy object including other sets.

• Integers represents the set of integers Z.
• Naturals represents the set of natural numbers N, i.e., the set of positive

integers.
• Naturals0 represents the set of whole numbers N0, which are all the non-

negative integers.
• Range represents a range of integers. A range is defined by specifying a start
value, an end value, and a step size. The enumeration of a Range object

SM6

is functionally equivalent to Python’s range except it supports infinite end-
points, allowing the representation of infinite ranges.

• Interval represents an interval of real numbers. It is defined by giving the
start and the end points and by specifying if the interval is open or closed on
the respective ends.

Other than unevaluated classes of Union, Intersection, and Complement opera-
tions, SymPy has the following set classes.

• ProductSet defines the Cartesian product of two or more sets. The product
set is useful when representing higher dimensional spaces. For example, to
represent a three-dimensional space, SymPy uses the Cartesian product of
three real sets.

• ImageSet represents the image of a function when applied to a particular set.
The image set of a function F with respect to a set S is {F (x) | x ∈ S}.
SymPy uses image sets to represent sets of infinite solutions of equations
such as sin(x) = 0.

• ConditionSet represents a subset of a set whose members satisfy a particular
condition. The subset of set S given by the condition H is {x | H(x), x ∈ S}.
SymPy uses condition sets to represent the set of solutions of equations and
inequalities, where the equation or the inequality is the condition and the set
is the domain over which it is being solved.

A few other classes are implemented as special cases of the classes described
above. The set of real numbers, Reals, is implemented as a special case of Interval.
ComplexRegion is implemented as a special case of ImageSet. ComplexRegion supports
both polar and rectangular representation of regions on the complex plane.

SM6. Category Theory. SymPy includes a module for dealing with categories—
abstract mathematical objects representing classes of structures as classes of objects
(points) and morphisms (arrows) between the objects. The module was designed with
the following two goals in mind:

1. automatic typesetting of diagrams given by a collection of objects and of
morphisms between them, and

2. specification and semi-automatic derivation of properties using commutative
diagrams.

As of version 1.0, SymPy only implements the first goal, while a partially working
draft of implementation of the second goal is available at https://github.com/scolobb/
sympy/tree/ct4-commutativity.

In order to achieve the two goals, the module sympy.categories defines several
classes representing some of the essential concepts: objects, morphisms, categories,
and diagrams. In category theory, the inner structure of objects is often discarded in
the favor of studying the properties of morphisms, so the class Object is essentially a
synonym of the class Symbol. There are several morphism classes which do not have a
particular internal structure either, though an exception is CompositeMorphism, which
essentially stores a list of morphisms.

The class Diagram captures the properties of morphisms. This class stores a
family of morphisms, the corresponding source and target objects, and, possibly,
some properties of the morphisms. Generally, no restrictions are imposed on what the
properties may be—for example, one might use strings of the form “forall”, “exists”,
“unique”, etc. Furthermore, the morphisms of a diagram are grouped into premises
and conclusions in order to be able to represent logical implications of the form “for
a collection of morphisms P with properties p : P → Ω (the premises), there exists a

SM7

https://github.com/scolobb/sympy/tree/ct4-commutativity
https://github.com/scolobb/sympy/tree/ct4-commutativity

collection of morphisms C with properties c : C → Ω (the conclusions)”, where Ω is
the universal collection of properties. Finally, the class Category includes a collection
of diagrams which are deemed commutative and which therefore define the properties
of this category.

Automatic typesetting of diagrams takes a Diagram and produces LATEX code
using the Xy-pic package. Typesetting is done in two stages: layout and generation
of Xy-pic code. The layout stage is taken care of by the class DiagramGrid, which
takes a Diagram and lays out the objects in a grid, trying to reduce the average length
of the arrows in the final picture. By default, DiagramGrid uses a series of triangle-
based heuristics to produce a rectangular grid. A linear layout can also be imposed.
Furthermore, groups of objects can be given; in this case, the groups will be treated
as atomic cells, and the member objects will be typeset independently of the other
objects.

The second phase of diagram typesetting consists in actually drawing the picture
and is carried out by the class XypicDiagramDrawer. An example of a diagram auto-
matically typeset by DiagramgGrid and XypicDiagramDrawer in given in Figure SM1.

A
f
//
h2

))lA,,
nA
MM B

g

��

D
k
oo

h

}}

h1

�� lD
��

nD

ll

C
lC
MM
nC

ll

Fig. SM1: An automatically typeset commutative diagram

As far as the second main goal of the module is concerned, the principal idea
consists in automatically deciding whether a diagram is commutative or not, given a
collection of “axioms”: diagrams known to be commutative. The implementation is
based on graph embeddings (injective maps): whenever an embedding of a commu-
tative diagram into a given diagram is found, one concludes that the subdiagram is
commutative. Deciding commutativity of the whole diagram is therefore based (the-
oretically) on finding a “cover” of the target diagram by embeddings of the axioms.
The naïve implementation proved to be prohibitively slow; a better optimized version
is therefore in order, as well as application of heuristics.

SM7. SymPy Gamma. SymPy Gamma is a simple web application that runs
on Google App Engine. It executes and displays the results of SymPy expressions as
well as additional related computations, in a fashion similar to that of Wolfram|Alpha.
For instance, entering an integer will display its prime factors, digits in the base-10
expansion, and a factorization diagram. Entering a function will display its docstring;
in general, entering an arbitrary expression will display its derivative, integral, series
expansion, plot, and roots.

SymPy Gamma also has several features beyond just computing the results using
SymPy.

• SymPy Gamma displays integration and differentiation steps in detail, which
can be viewed in Figure SM2:

SM8

Fig. SM2: Integral steps of tan(x)

• SymPy Gamma displays the factor tree diagrams for different numbers.
• SymPy Gamma saves user search queries, and offers many such similar fea-
tures for free, which Wolfram|Alpha only offers to its paid users.

Every input query from the user on SymPy Gamma is first parsed by its own parser
capable of handling several different forms of function names which SymPy as a library
does not support. For instance, SymPy Gamma supports queries like sin x, whereas
SymPy will only recognise sin(x).

This parser converts the input query to the equivalent SymPy readable code,
which is then processed by SymPy, and the result is finally printed with the built-in
LATEX output and rendered by the SymPy Gamma web application.

SM8. SymPy Live. SymPy Live is an online Python shell, which uses the
Google App Engine to executes SymPy code. It is integrated in the SymPy docu-
mentation examples at http://docs.sympy.org.

This is accomplished by providing a HTML/JavaScript GUI for entering source
code and visualization of output, and a server that evaluates the requested source
code. It is an interactive AJAX shell that runs SymPy code using Python on the
server.

SM9

http://docs.sympy.org

SM9. Comparison with Mathematica. Wolfram Mathematica is a popular
proprietary CAS that features highly advanced algorithms, has a core written in
C++ [SM15], and interprets its own programming language, Wolfram Language.

Analogous to Lisp S-expressions, Mathematica uses its own style of M-expres-
sions, which are arrays of either atoms or other M-expressions. The first element of
the expression identifies the type of the expression and is indexed by zero, and the first
argument is indexed starting with one. In SymPy, expression arguments are stored in
a Python tuple (that is, an immutable array), while the expression type is identified
by the type of the object storing the expression.

Mathematica can associate attributes to its atoms. Attributes may define math-
ematical properties and behavior of the nodes associated to the atom. In SymPy,
the usage of static class fields is roughly similar to Mathematica’s attributes, though
other programming patterns may also be used to achieve an equivalent behavior such
as class inheritance.

Unlike SymPy, Mathematica’s expressions are mutable: one can change parts of
the expression tree without the need of creating a new object. The mutability of
Mathematica expressions allows for a lazy updating of any references to a given data
structure.

Products in Mathematica are determined by some built in node types, such as
Times, Dot, and others. Times is a representation of the * operator, and is always
meant to represent a commutative product operator. The other notable product is
Dot, which represents the . operator. This product represents matrix multiplication.
It is not commutative. Unlike Mathematica, SymPy determines commutativity with
respect to multiplication from the expression type of the factors. Mathematica puts
the Orderless attribute on the expression type.

Regarding associative expressions, SymPy handles associativity of sums and prod-
ucts by automatically flattening them, Mathematica specifies the Flat attribute on
the expression type.

Mathematica relies heavily on pattern matching—even the so-called equivalent of
function declaration is in reality the definition of a pattern generating an expression
tree transformation on input expressions. Mathematica’s pattern matching is sensitive
to associative, commutative, and one-identity properties of its expression tree nodes.
SymPy has various ways to perform pattern matching. All of them play a lesser
role in the CAS than in Mathematica and are basically available as a tool to rewrite
expressions. The differential equation solver in SymPy somewhat relies on pattern
matching to identify differential equation types, but it is envisaged to replace that
strategy with analysis of Lie symmetries in the future. Mathematica’s real advantage
is the ability to add (at runtime) new overloading to the expression builder or specific
subnodes. Consider for example:
In[1]:= Unprotect[Plus]
Out[1]= {Plus}

In[2]:= Sin[x_]^2 + Cos[y_]^2 := 1

In[3]:= x + Sin[t]^2 + y + Cos[t]^2
Out[3]= 1 + x + y
This expression in Mathematica defines a substitution rule that overloads the func-
tionality of the Plus node (the node for additions in Mathematica). A symbol with
a trailing underscore is treated as a wildcard. Although one may wish to keep this
identity unevaluated, this example clearly illustrates the potential to define one’s own

SM10

immediate transformation rules. In SymPy, the operations constructing the addition
node in the expression tree are Python class constructors and cannot be modified at
runtime.1 The way SymPy deals with extending the missing runtime overloadabil-
ity functionality is by subclassing the node types: subclasses may redefine the class
constructor to yield the proper extended functionality.

Unlike SymPy, Mathematica does not support type inheritance or polymorph-
ism [SM4]. SymPy relies heavily on class inheritance, but for the most part, class
inheritance is used to make sure that SymPy objects inherit the proper methods and
implement the basic hashing system.

While Mathematica interprets nested lists as matrices whenever the sublists have
the same length, matrices in SymPy are a type in their own right, allowing ordinary
operators and functions (like multiplication and exponentiation) to be used as they
traditionally are in mathematics.
>>> exp(Matrix([[1, 1],[0, 2]])) * Matrix([a, b])
Matrix([
[E*a + b*(-E + exp(2))],
[b*exp(2)]])

Using the standard multiplication in Mathematica performs an element-wise prod-
uct and calling the exponential function Exp on a matrix returns an element-wise
exponentiation of its elements.

Unevaluated expressions in Mathematica can be achieved in various ways, most
commonly with the HoldForm or Hold nodes, that block the evaluation of subnodes by
the parser. Such a node cannot be expressed in Python because of greedy evaluation.
Whenever needed in SymPy, it is necessary to add the parameter evaluate=False to
all subnodes.

In Mathematica, the operator == returns a boolean whenever it is able to imme-
diately evaluate the truth of the equality, otherwise it returns an Equal expression.
In SymPy, == means structural equality and is always guaranteed to return a boolean
expression. To express a mathematical equality in SymPy it is necessary to explicitly
construct an instance of the Equality class.

SymPy, in accordance with Python (and unlike the usual programming conven-
tion), uses ** to express the power operator, while Mathematica uses the more com-
mon ^.

SymPy’s use of floating-point numbers is similar to that of most other CASs,
including Maple and Maxima. By contrast, Mathematica uses a form of significance
arithmetic [SM13] for approximate numbers. This offers further protection against
numerical errors, although it comes with its own set of problems (for a critique of
significance arithmetic, see Fateman [SM4]). Internally, SymPy’s evalf method works
similarly to Mathematica’s significance arithmetic, but the semantics are isolated from
the rest of the system.

SM10. Other Projects that use SymPy. There are several projects that use
SymPy as a library for implementing a part of their functionality. Some of them are
listed below:

• Cadabra: Cadabra is a CAS designed specifically for the resolution of prob-
lems encountered in field theory.

• Octave Symbolic: The Octave-Forge Symbolic package adds symbolic cal-
culation features to GNU Octave. These include common CAS tools such as

1Nonetheless, Python supports monkey patching but it is a discouraged programming pattern.

SM11

http://cadabra.science/index.html
http://octave.sourceforge.net/symbolic/

algebraic operations, calculus, equation solving, Fourier and Laplace trans-
forms, variable precision arithmetic, and other features.

• SymPy.jl: Provides a Julia interface to SymPy using PyCall.
• Mathics: Mathics is a free, general-purpose online CAS featuring Mathe-
matica compatible syntax and functions. It is backed by highly extensible
Python code, relying on SymPy for most mathematical tasks.

• Mathpix: An iOS App, that detects handwritten math as input, and uses
SymPy Gamma to evaluate the math input and generate the relevant steps
to solve the problem.

• IKFast: IKFast is a robot kinematics compiler provided by OpenRAVE.
It analytically solves robot inverse kinematics equations and generates opti-
mized C++ files. It uses SymPy for its internal symbolic mathematics.

• Sage: A CAS, visioned to be a viable free open source alternative to Magma,
Maple, Mathematica and MATLAB. Sage includes many open source math-
ematical libraries, including SymPy.

• SageMathCloud: SageMathCloud is a web-based cloud computing and
course management platform for computational mathematics.

• PyDy: Multibody Dynamics with Python.
• galgebra: Geometric algebra (previously sympy.galgebra).
• yt: Python package for analyzing and visualizing volumetric data (yt.units
uses SymPy).

• SfePy: Simple finite elements in Python, see section SM10.1.
• Quameon: Quantum Monte Carlo in Python.
• Lcapy: Experimental Python package for teaching linear circuit analysis.
• Quantum Programming in Python: Quantum 1D Simple Harmonic Os-
cillator and Quantum Mapping Gate.

• LaTeX Expression project: Easy LATEX typesetting of algebraic expres-
sions in symbolic form with automatic substitution and result computation.

• Symbolic statistical modeling: Adding statistical operations to complex
physical models.

SM10.1. SfePy. SfePy (Simple finite elements in Python), cf. [SM3], is a
Python package for solving partial differential equations (PDEs) in 1D, 2D and 3D
by the finite element (FE) method [SM16]. SymPy is used within this package mostly
for code generation and testing, namely:

• generation of the hierarchical FE basis module, involving generation and sym-
bolic differentiation of 1D Legendre and Lobatto polynomials, constructing
the FE basis polynomials [SM14] and generating the C code;

• generation of symbolic conversion formulas for various groups of elastic con-
stants [SM6]: provide any two of the Young’s modulus, Poisson’s ratio, bulk
modulus, Lamé’s first parameter, shear modulus (Lamé’s second parameter)
or longitudinal wave modulus and get the other ones;

• simple physical unit conversions, generation of consistent unit sets;
• testing FE solutions using method of manufactured (analytical) solutions: the
differential operator of a PDE is symbolically applied and a symbolic right-
hand side is created, evaluated in quadrature points, and subsequently used
to obtain a numerical solution that is then compared to the analytical one;

• testing accuracy of 1D, 2D and 3D numerical quadrature formulas (cf. [SM1])
by generating polynomials of suitable orders, integrating them, and compar-
ing the results with those obtained by the numerical quadrature.

SM12

https://github.com/jverzani/SymPy.jl
https://mathics.github.io/
http://mathpix.com/
http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://openrave.org/
http://www.sagemath.org/
https://cloud.sagemath.com
http://www.pydy.org/
https://github.com/brombo/galgebra
http://yt-project.org/
http://sfepy.org/
http://quameon.sourceforge.net/
http://lcapy.elec.canterbury.ac.nz/
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1072&context=physsp/
http://mech.fsv.cvut.cz/~stransky/software/latexexpr/doc/
https://www.researchgate.net/publication/260585491_Symbolic_Statistics_with_SymPy/
http://sfepy.org/

SM11. Tensors. Ongoing work to provide the capabilities of tensor computer
algebra has so far produced the tensor module. It comprises three submodules whose
purposes are quite different: sympy.tensor.indexed and sympy.tensor.indexed_methods
support indexed symbols, sympy.tensor.array contains facilities to operate on sym-
bolic N -dimensional arrays, and finally sympy.tensor.tensor is used to define ab-
stract tensors. The abstract tensors submodule is inspired by xAct [SM10] and
Cadabra [SM12]. Canonicalization based on the Butler-Portugal [SM9] algorithm
is supported in SymPy. Tensor support in SymPy is currently limited to polynomial
tensor expressions.

SM12. Numerical simplification. The nsimplify function in SymPy (a wrap-
per of identify in mpmath) attempts to find a simple symbolic expression that evalu-
ates to the same numerical value as the given input. It works by applying a few simple
transformations (including square roots, reciprocals, logarithms and exponentials) to
the input and, for each transformed value, using the PSLQ algorithm [SM5] to search
for a matching algebraic number or optionally a linear combination of user-provided
base constants (such as π).
>>> t = 1 / (sin(pi/5)+sin(2*pi/5)+sin(3*pi/5)+sin(4*pi/5))**2
>>> nsimplify(t)
-2*sqrt(5)/5 + 1
>>> nsimplify(pi, tolerance=0.01)
22/7
>>> nsimplify(1.783919626661888, [pi], tolerance=1e-12)
pi/(-1/3 + 2*pi/3)

SM13. Examples.

SM13.1. Simplification.
• expand:

>>> expand((x + y)**3)
x**3 + 3*x**2*y + 3*x*y**2 + y**3

• factor:
>>> factor(x**3 + 3*x**2*y + 3*x*y**2 + y**3)
(x + y)**3

• collect:
>>> collect(y*x**2 + 3*x**2 - x*y + x - 1, x)
x**2*(y + 3) + x*(-y + 1) - 1

• cancel:
>>> cancel((x**2 + 2*x + 1)/(x**2 - 1))
(x + 1)/(x - 1)

• apart:
>>> apart((x**3 + 4*x - 1)/(x**2 - 1))
x + 3/(x + 1) + 2/(x - 1)

• trigsimp:
>>> trigsimp(cos(x)**2*tan(x) - sin(2*x))
-sin(2*x)/2

SM13.2. Polynomials.
• Factorization:

>>> t = symbols("t")
>>> f = (2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 -
... 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t -

SM13

... 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 +

... y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 -

... 2*z*t**3)
>>> factor(f)
(t**2*z**3 - t**2 + 47*x*y)*(2*t*z + 45*x**3 - 9*y**3 - y**2 +
3*z**3)

• Gröbner bases:
>>> x0, x1, x2 = symbols('x:3')
>>> I = [x0 + 2*x1 + 2*x2 - 1,
... x0**2 + 2*x1**2 + 2*x2**2 - x0,
... 2*x0*x1 + 2*x1*x2 - x1]
>>> groebner(I, order='lex')
GroebnerBasis([7*x0 - 420*x2**3 + 158*x2**2 + 8*x2 - 7,
7*x1 + 210*x2**3 - 79*x2**2 + 3*x2,
84*x2**4 - 40*x2**3 + x2**2 + x2], x0, x1, x2, domain='ZZ',
order='lex')

• Root isolation:
>>> f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20
>>> intervals(f, all=True, eps=0.001)
([],
[((-425/1024 - 625*I/1024, -1485/3584 - 2185*I/3584), 1),
((-425/1024 + 2185*I/3584, -1485/3584 + 625*I/1024), 1),
((3175/1792 - 2605*I/1792, 1815/1024 - 10415*I/7168), 1),
((3175/1792 + 10415*I/7168, 1815/1024 + 2605*I/1792), 1)])

SM13.3. Solvers.
• Single solution:

>>> solveset(x - 1, x)
{1}

• Finite solution set, quadratic equation:
>>> solveset(x**2 - pi**2, x)
{-pi, pi}

• No solution:
>>> solveset(1, x)
EmptySet()

• Interval solution:
>>> solveset(x**2 - 3 > 0, x, domain=S.Reals)
(-oo, -sqrt(3)) U (sqrt(3), oo)

• Infinitely many solutions:
>>> solveset(x - x, x, domain=S.Reals)
(-oo, oo)
>>> solveset(x - x, x, domain=S.Complexes)
S.Complexes

• Linear systems (linsolve)
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), x, y, z)
{(-1, 2, 0)}
>>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))
{(-y - 1, y, 2)}

SM14

Below are examples of solve applied to problems not yet handled by solveset.
• Nonlinear (multivariate) system of equations (the intersection of a circle and
a parabola):
>>> solve([x**2 + y**2 - 16, 4*x - y**2 + 6], x, y)
[(-2 + sqrt(14), -sqrt(-2 + 4*sqrt(14))),
(-2 + sqrt(14), sqrt(-2 + 4*sqrt(14))),
(-sqrt(14) - 2, -I*sqrt(2 + 4*sqrt(14))),
(-sqrt(14) - 2, I*sqrt(2 + 4*sqrt(14)))]

• Transcendental equations:
>>> solve((x + log(x))**2 - 5*(x + log(x)) + 6, x)
[LambertW(exp(2)), LambertW(exp(3))]
>>> solve(x**3 + exp(x))
[-3*LambertW((-1)**(2/3)/3)]

SM13.4. Matrices.
• Matrix expressions

>>> m, n, p = symbols("m, n, p", integer=True)
>>> R = MatrixSymbol("R", m, n)
>>> S = MatrixSymbol("S", n, p)
>>> T = MatrixSymbol("T", m, p)
>>> U = R*S + 2*T
>>> U.shape
(m, p)
>>> U[0, 1]
2*T[0, 1] + Sum(R[0, _k]*S[_k, 1], (_k, 0, n - 1))

• Block Matrices
>>> n, m, l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m ,m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>>> B
Matrix([
[X, Z],
[0, Y]])
>>> B[0, 0]
X[0, 0]
>>> B.shape
(m + n, m + n)

SM14. References.
REFERENCES

[SM1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover Publications, New York, NY, USA, ninth print-
ing ed., 1964, http://www.math.ucla.edu/~cbm/aands/.

[SM2] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University
Press, version 0.5.1 ed.

[SM3] R. Cimrman, SfePy - write your own FE application, in Proceedings of the 6th European
Conference on Python in Science (EuroSciPy 2013), P. de Buyl and N. Varoquaux, eds.,
2014, pp. 65–70. http://arxiv.org/abs/1404.6391.

[SM4] R. J. Fateman, A review of Mathematica, Journal of Symbolic Computation, 13 (1992),

SM15

http://www.math.ucla.edu/~cbm/aands/

pp. 545–579, http://dx.doi.org/DOI:10.1016/S0747-7171(10)80011-2.
[SM5] H. R. P. Ferguson, D. H. Bailey, and S. Arno, Analysis of PSLQ, an integer relation

finding algorithm, Mathematics of Computation, 68 (1999), pp. 351–369.
[SM6] Y. C. Fung, A first course in continuum mechanics, Pearson, third edition ed., 1993.
[SM7] D. Gruntz, On Computing Limits in a Symbolic Manipulation System, PhD thesis, Swiss

Federal Institute of Technology, Zürich, Switzerland, 1996.
[SM8] D. Gruntz and W. Koepf, Formal power series, (1993).
[SM9] L. R. U. Manssur, R. Portugal, and B. F. Svaiter, Group-theoretic approach for symbolic

tensor manipulation, International Journal of Modern Physics C, 13 (2002), http://dx.doi.
org/http://dx.doi.org/10.1142/S0129183102004571.

[SM10] J. Martín-García, xAct, efficient tensor computer algebra, 2002-2016, http://metric.iem.
csic.es/Martin-Garcia/xAct/.

[SM11] M. Moskewicz, C. Madigan, and S. Malik, Method and system for efficient implementa-
tion of boolean satisfiability, Aug. 26 2008, http://www.google.co.in/patents/US7418369.
US Patent 7,418,369.

[SM12] K. Peeters, Cadabra: a field-theory motivated symbolic computer algebra system, Computer
Physics Communications, (2007).

[SM13] M. Sofroniou and G. Spaletta, Precise numerical computation, Journal of Logic and
Algebraic Programming, 64 (2005), pp. 113–134.

[SM14] P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods, Chapman &
Hall / CRC Press, 2003.

[SM15] S. Wolfram, The Mathematica Book, Wolfram Media, Champaign, IL, USA, fifth ed., 2003.
[SM16] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: Its Basis and

Fundamentals, Butterworth-Heinemann, seventh edition ed., 2013, http://dx.doi.org/http:
//dx.doi.org/10.1016/B978-1-85617-633-0.00019-8.

SM16

http://dx.doi.org/DOI: 10.1016/S0747-7171(10)80011-2
http://dx.doi.org/http://dx.doi.org/10.1142/S0129183102004571
http://dx.doi.org/http://dx.doi.org/10.1142/S0129183102004571
http://metric.iem.csic.es/Martin-Garcia/xAct/
http://metric.iem.csic.es/Martin-Garcia/xAct/
http://www.google.co.in/patents/US7418369
http://dx.doi.org/http://dx.doi.org/10.1016/B978-1-85617-633-0.00019-8
http://dx.doi.org/http://dx.doi.org/10.1016/B978-1-85617-633-0.00019-8

	Limits: The Gruntz Algorithm
	Series
	Series Expansion
	Formal Power Series
	Fourier Series

	Logic
	Constructing boolean expressions
	CNF and DNF
	Simplification and Equivalence
	SAT solving

	Diophantine Equations
	Sets
	Category Theory
	SymPy Gamma
	SymPy Live
	Comparison with Mathematica
	Other Projects that use SymPy
	SfePy

	Tensors
	Numerical simplification
	Examples
	Simplification
	Polynomials
	Solvers
	Matrices

	References
	References

