Supplemental Information for

Detection of methylation, acetylation and glycosylation of protein residues by monitoring ³C chemical-shift changes

Pablo G. Garay,¹ Osvaldo A. Martin,¹ Harold A. Scheraga² and Jorge A. Vila^{1,§}

¹IMASL-CONICET, Universidad Nacional de San Luis, Italia 1556, 5700-San Luis, Argentina; ²Baker Laboratory of Chemistry, Cornell University, Ithaca, NY, USA.

Figure S1.- (**a**) Kernel Density Estimation of the Δ values of the ¹³C^{α} nucleus of charged nonmodified (blue-line), acetylated (green-line), *mono*- (red-line), *di*- (violet-line), and *tri*methylated (yellow-line) Lys; (**b**) same as (**a**) for the ¹³C^{β} nucleus; (**c**) Kernel Density Estimation of the Δ values of the ¹³C^{α} nucleus of non-modified Lys upon protonation/deprotonation; (**d**) same as (**c**) for the ¹³C^{β} nucleus.

Figure S2.- (**a**) Kernel Density Estimation of the Δ values of the ${}^{13}C^{\alpha}$ nucleus of *non*-modified (blue-line), N^{ε} (green-line) and N^{η} (red-line) *mono*-methylated, asymmetric (violet-line) and symmetric (yellow-line) *di*-methylated Arg; (**b**) same as (**a**) for the ${}^{13}C^{\beta}$ nucleus.

Figure S3. Probability to detect glycosylation of Ser, i.e., either α -D-GalpNAc-(1-O)-Ser or β -D-GlcpNAc-(1-O)-Ser, as a function of the Δ values of the ${}^{13}C^{\beta}$ nucleus of Ser (shown in Figure 4 in the main text). The red line represents the expected probability-profile and the blue lines the uncertainty in the data according to the Bayesian model.

Figure S4. Probability to detect glycosylation of Thr [α -D-GalpNAc-(1-O)-Thr], as a function of the chemical-shift differences (Δ) for the ¹³C^{β} nucleus of Thr (shown in Figure 6 in the main text). The red line represents the expected probability-profile and the blue lines the uncertainty in the data according to the Bayesian model.

Figure S5.- Probability to detect glycosylation of Asn [β -D-GlcpNAc-(1-N)-Asn], as a function of the chemical-shift differences (Δ) for the ¹³C^{γ} nucleus of Asn (shown in Figure 7 in the main text). The red line represents the expected probability-profile and the blue lines the uncertainty in the data according to the Bayesian model.

Figure S6.- Ball and stick representation of a glycan-amino acidic residue, namely for α -D-GalpNAc-(1-O)-Thr with "1" representing **C1** of the glycan and "O" representing the oxygen of the side-chain of Thr in an Ac-Gly-Thr-Gly-Nme tripeptide, in an arbitrary conformation. The χ^2 and χ^3 torsional angle, for the carbohydrate group (α -D-GalpNAc), are highlighted in green, while the one corresponding to the amino-acidic residue (Thr) are in red, for ϕ,ψ , and purple, for χ^1 .

Figure S7.- Ball and stick representation of a glycan-amino acidic residue, namely for β -D-GlcpNAc-(1-N)-Asn with "1" representing **C1** of the glycan and "N" representing the nitrogen of the side-chain of Asn in an Ac-Gly-Asn-Gly-Nme tripeptide, in an arbitrary conformation. The χ 3 and χ 4 torsional angles, for the carbohydrate group (β -D-GalpNAc), are highlighted in green, while the corresponding one for the amino-acidic residue (Asn) are highlighted in red, for ϕ , ψ , and purple, for χ 1 and χ 2.