
The Basic Boyer-Moore Algorithm 
The following definition of the Boyer-Moore algorithm omits a skip loop because it is widely 
ignored in practice. The basic algorithm, as shown below, will be referred to as bmOrg in the 
remainder of this paper. First the processing of the pattern will be detailed with the building of 
the look-up tables and then the algorithm for the searching phase will be given. The definition 
of the algorithm differs from the one given in the original paper but seems more appropriate 
in this context.  
 
Preprocessing Phase 
First the delta1 (d1) table, also called bad character shift, for looking up a shift value given a 
mismatch between two characters will be defined. Obviously, the table requires an extra space 
of O(α) and is preprocessed in time O(m + α).  
 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 

 
Now the delta2 (d2) table, also called good suffix shift, for looking up a shift value given a 
mismatch position as an index of p will be defined. An extra space of O(m) is obviously 
needed to represent this table. The time complexity to construct this table is also O(m). 
 
 10 i = m, j = m + 1 
 20 fbm[i] = j 
 30 do while i > 0 
 40  do while j <= m and p[i-1] != p[j-1] 
 50   if d2[j] = 0 then 
 60    d2[j] = j – i 
 70   end if 
 80   j=fbm[j] 
 90  end while 
100  i-- 
110  j-- 
120  fbm[i] = j 
130 end while 
140 j = fbm[0]; 
150 for i:0 to m do 
160  if d2[i] = 0 then 
170   d2[i] = j 
190  end if 
190  if i = j then 
200   j = fbm[j] 
210  end if 
220 end for 

 
The two shift tables, d1 and d2, are needed in the search phase to determine the amount of 
characters the pattern can be progressed along t for the next attempt given a mismatch or a 
complete match in the previous attempt.  
 
Search Phase 
The algorithm used in the searching phase will be detailed next.  
 
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n - m 
 30  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 



 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp = tp + max(d1(tp+j),d2(j)) 
120 end while 

 

Fast Boyer-Moore 
This implementation of the BM algorithm, abbreviated as bmFast, incorporates the fast loop 
as described in the original paper. 
 
Preprocessing Phase 
In addition to the d1 and d2 table of bmOrg, a table called d0 is needed which will be used 
during the skip loop. It needs an extra space of O(α) and can be constructed in O(α) time as a 
deep copy of the d1 table.  
 
10 Let d0 = d1 
20 Let d0[p[m]] = 2 * n 

 
Search Phase 
The skip loop in the fast BM algorithm has been proposed since most time is spend in sliding 
the pattern along t due to immediate mismatches. The skip loop can be implemented as an 
addition to the basic algorithm.  
 
 10 let tp = 0 //tp: text pointer 
 21 do while tp < n 
 22  let tp = tp + d0[t[tp]] 
 23 end while 
 24 if tp < 2 * n then 
 25  break 
 26 end if 
 27 let tp = tp – 2 * n - 1 
 28 do while tp < n - m 
 30  let j =  m – 1 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp = tp + max(d1(tp+j),d2(j)) 
120 end while 
 

Boyer-Moore-Horspool 
Preprocessing Phase 
The Boyer-Moore algorithm, abbreviated as BMH, was altered by Horspool by simply 
dropping the good suffix shift (d2) and by reintroducing the skip loop.  
 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
 70 Let d0 = d1 



 80 Let d0[p[m]] = 0 
 90 for i from 0 to m do  
100  let d1[p[i]] = m - i 
110 end for 

 
Search Phase 
The implementation here, unlike the one given by Horspool, uses three fold unrolling of the 
skip loop as proposed by Hume and Sunday. It depends on the suffix being set to zero in the 
d0 table (see Preprocessing Phase). The complexity is the same as established previously for 
bmOrg and bmFast. 
 
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n – m 
 21  k = d0[t[tp]] 
 22  do while k != 0 
 22   let tp = tp + (k = d0[t[tp]]) 
 23    let tp = tp + (k = d0[t[tp]]) 
 24   let tp = tp + (k = d0[t[tp]]) 
 25  end while 
 30  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp = tp + max(d1(tp+j),d2(j)) 
120 end while 

 

Boyer-Moore-HM 
This algorithm, abbreviated bm4DNAHM, uses a hash table (shift table) to store windows of 
size w from the pattern. Here, only subsets of the pattern are used and the size of the word w 
is calculated from m and α as described by Wu and Manber. From left to right, the sequences 
are extracted; their hash value and the potential shift along t are calculated and stored in the 
shift table, excluding the suffix. This has two advantages, one being that occurrences of a 
pattern that has been encountered before will update the shift value in the shift table, and the 
other being that the shift table can almost directly be used and the actual shift values need not 
be repeatedly calculated in the search phase. Therefore, only a single pass over the pattern is 
necessary. Finally, the hash value of the suffix is calculated and stored in the shift table. If the 
hash is associated with another substring of p, then the shift value present in the table is stored 
as the suffix shift otherwise the suffix shift is set to m - w. In every case, the value in the shift 
table is set to zero. The complexity for the preprocessing phase is O(m * w) where w << m. 
During the matching phase, the algorithm makes use of the shift table, the details of which are 
outlined below. Processing the text from left to right, w sized portions of t are extracted from 
the right most position of the alignment of t and p, ending at the current position of the text 
pointer. The hash value for the w sized portion of t is calculated using the function as 
specified below and then the shift is determined using the shift function detailed below. It 
returns the largest possible shift for the hash value given or zero if the hash cannot be found in 
the shift table. In order to diminish the overhead introduced through the skip loop, the 
statement is repeated 3 times. Hume and Sunday determined three-fold unrolling as the best 
value in their assessment. In case a potential match is encountered, it is first determined 
whether it is the suffix of p or an infix. If it is indeed the suffix, the remainder of p is 
compared character by character against t until the end of p or a mismatch is encountered. 



Any matches encountered are reported. Regardless of match or mismatch, p is progressed 
along t by the shift value stored for the suffix hash. 
Two functions are needed for this algorithm which will be shown first. Afterwards the 
algorithms for preprocessing phase and search phase are defined. 
 
Shift function 
 10 shift(key) { 
 20  let res = d1[key] 
 30  if res = notFound then 
 40   return m - w 
 50  end if 
 60  return 0 
 70 } 

 
Hash function 
 10 hash(p) { 
 20  let hashVal = 0 
 30  for j:0 to w do 
 40   let hashVal = (hashVal * 128 + p[j]); 
 50  end for 
 60  return hashVal 
 70 } 

 
Preprocessing phase 
A single shift table is created in the preprocessing phase, which needs an extra space of O(m) 
and can be created in O(m) time. This table is similar to the bad character shift table in bmOrg 
except for the transformed alphabet and shall therefore be referred to as d1. Only the infixes 
of p are represented in d1 which leads to the small extra space. Another extra space of O(m) is 
needed since p is appended to t.  
  
 10 append p to t 
 20 roreach infix of size w in p, excluding the suffix (from left to right) 
 30  let key = hash(infix) 
 40  let s = shift(key) 
 50  let d1[key] = s 
 60 end foreach 
 70 let key = hash(suffix) 
 80 if key not in d1 then 
 90  let suffixShift = m-w  
100 end if 
110 suffix = key 

 
 
Search Phase 
The search phase introduces an unspecified function getWindow(int,int), which in practice is 
implemented as an inline for loop, and returns the w sized string portion of t at the specified 
position in t. Clearly the best case complexity reduces to O(n / (m - w)) due to the w sized 
suffix that needs to be checked. Here, the array operations for getting the w sized portion are 
included. If only the number of comparisons is considered, the best case complexity is equal 
to bmOrg’s.  
 
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n - m 
 21  key = hash(getWindow(tp,w)) 
 22  k = shift(key) 
 23  do while k != 0  
 24   let tp += (k = d1[hash(getWindow(tp,w)))] 
 25   let tp += (k = d1[hash(getWindow(tp,w)))] 
 26   let tp += (k = d1[hash(getWindow(tp,w)))] 



 27  End while 
 28  If key != suffix then 
 29   let tp += d1[key] 
 30   continue 
 31  end if 
 32  If tp > n then 
 33   break 
 34  End if 
 35  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp += d1[key] 
120 end while 

 

Boyer-Moore-HM best solution 
This algorithm, abbreviated as bm4DNAHMbs, is rather similar to the algorithm described 
above. A significant difference is that only the encounter of the suffix will halt the skip loop 
which means that this algorithm has the highly desirable potential to remain in the skip loop 
longer than the previous one. Another advantage is that the check for the hash being the suffix 
is removed, which requires a slight adaptation of the preprocessing phase is necessary because 
of this. The shift for the suffix is now zero and the real shift that would be possible needs to 
be stored in an extra variable. A sentinel chosen as p[0] is installed and checked after a suffix 
match has been established. The value stored in suffixShift can be used to progress the pattern 
along the text since it would align with the first following internal repeat, if any. 
The complexity for both preprocessing and matching phase remains unchanged for the best 
case, but improvements on the average can be expected.  
The hash function is equal to the previous algorithm. 
 
Shift function 
The shift function is different from the one used in bm4DNAhm and always returns a positive 
shift unless the suffix is encountered which then returns 0 (see Preprocessing Phase). 
 
 10 shift(key) { 
 20  let res = d1[key] 
 30  if res = notFound 
 40   return m-w 
 50  return res 
 60 } 

 
 
Preprocessing phase 
In contrast to the bm4DNAhm a sentinel is used in this algorithm which is defined during 
preprocessing. Furthermore, the suffixKey member is removed and instead the suffix shift is 
stored. 
 
  5  Let sentinel = p[0] 
 10 append p to t 
 20 roreach infix of size w in p, excluding the suffix (from left to right) 
 30  let key = hash(infix) 
 40  let s = shift(key) 
 50  let d1[key] = s 
 60 end foreach 



 70 let key = hash(suffix) 
 80 if key not in d1 then 
 90  let suffixShift = m - w  
100 else 
110  let suffixShift = d1[key] 
120 end if 
130 let d1[key] = 0 

 
 
Search Phase 
Although only a small number of changes have been made to bm4DNAhm but they may 
prove to be crucial for the practical behavior of the algorithm in the average case while the 
best case complexity remains unchanged. The suffix shift is used since it can potentially 
provide the largest shifts. Similar to the d2 table which considers subsequences, the suffix 
shift aligns the text with the next occurrence of the suffix in p. It is to be expected that the 
algorithm would perform better, on the average, than bm4DNAHM. An improvement would 
be to shift the maximum of suffixShift and the shift determined from d1 however this was 
beyond the scope of this study. The complexity of the algorithm remains unaffected by these 
changes. 
 
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n - m 
 21  key = hash(getWindow(tp,w)) 
 22  k = shift(key) 
 23  do while k != 0  
 24   let tp += (k = d1[hash(getWindow(tp,w)))] 
 25   let tp += (k = d1[hash(getWindow(tp,w)))] 
 26   let tp += (k = d1[hash(getWindow(tp,w)))] 
 27  End while 
 28  If(t[p - m) != sentinel) 
 29   let tp += suffixShift 
 30   continue  
 31  end if 
 32  If tp > n then 
 33   break 
 34  End if 
 35  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp += suffixShift 
120 end while 

 

Boyer-Moore-4DNA 
Instead of using hashing and extracting w sized portions from t to speed up processing, the 
following algorithm uses sentinels, which are created by storing the first w characters of p 
from left to right in separate variables that can be quickly checked prior to comparing the 
remaining characters of p to t. Sentinels are checked from left to right which while not being 
detrimental, may or may not be beneficial. In case a sentinel determines a mismatch, p is 
progressed along t. In case none of the sentinels report, the remainder of the pattern is 
checked against t until a match or mismatch is determined. 
The complexity of the preprocessing phase is O(2 α + m) where α is 128 since the ASCII 
character set was used for simplicity. In this specific case, however, α should be much smaller 
than m (α = 6; 9 < m < 2000). In the best case the complexity is the same as determined for 



BMH while on the average runtime some improvements should be observed. In the following 
this algorithm will be referred to as bm4DNA. 
 
Preprocessing Phase 
In the preprocessing phase w sentinels must be installed. This increases the extra space needed 
by w and increases the extra time needed by w as well 
 
  1 Append p to t 
  2 sentinel0 = p[0] 
  3 sentinel1 = p[1] 
//Until desired number of sentinels has been established 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
 70 Let d0 = d1 
 80 Let d0[p[m]] = 0 
 90 for i from 0 to m do  
100  let d1[p[i]] = m - i 
110 end for 

 
 
Search phase 
In the search phase each sentinel is checked prior to entering the check loop as in bmOrg 
which here is reduced by w since the sentinels have already been checked (not shown below). 
The shifts in this algorithm are mere increments of one. Due this the best case complexity 
reduces to O(n). 
  
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n – m 
 21  k = d0[t[tp]] 
 22  do while k != 0 
 22   let tp = tp + (k = d0[t[tp]]) 
 23    let tp = tp + (k = d0[t[tp]]) 
 24   let tp = tp + (k = d0[t[tp]]) 
 25  end while 
 26  if t[tp - m] != sentinel0 then , 
 27   let tp++ 
 28   contiune 
 29  end if 
 30  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  tp++ 
120 end while 

 

Boyer-Moore-IS 
This variation of the 4DNA algorithm, termed bm4DNAIS, uses sentinels as well but differs 
in several other aspects. In the preprocessing phase, it is little different from BMH except for 
dropping the d0 table and instead using a negative value to represent the suffix’s membership 
to p. The preprocessing complexity is thus reduced to O(α + m). Dropping the d0 table 
however leads to the problem that the skip loop cannot be unrolled since the values returned 



may be negative rather than zero. Nonetheless, by merely multiplying the shift by -1 it can be 
used to progress p along t in case a mismatch, or when a complete match is encountered, 
which is better than increments by one as in bm4DNA. Using only a negative value for the 
suffix also guaranteed that in further processing at least the suffix of p matches t in the 
alignment. 
In case a mismatch or match is encountered the shift can be determined by multiplying the 
shift value of the suffix by -1. 
 
Preprocessing phase 
 
  1 Append p to t 
  2 sentinel0 = p[0] 
  3 sentinel1 = p[1] 
//Until desired number of sentinels has been established 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
 70 Let d1[p[m]] = d1[p[m]] * -1 

 
Search phase 
Instead of using simple increments for shifting as in bm4DNA, the d1 shift table is used and 
thus the best case complexity is the same as for bmOrg.  
 
 10 let tp = 0 //tp: text pointer 
 21 do while tp < n 
 22  let tp = tp + d0[t[tp]] 
 23 end while 
 24 if tp < 2 * n then 
 25  break 
 26 end if 
 27 if t[tp - m] != sentinel0 then , 
 28  let tp += d1[t[tp]] * -1 
 29  contiune 
 30 end if 
 31 do while tp < n - m 
 32  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp += d1[t[tp]] * -1 
120 end while 

 

Boyer-Moore-DS 
Although reasonably similar to the algorithm above, some changes in the algorithm should 
lead to significant differences in runtime. Instead of using just one shift table, two tables are 
used, one representing the potential shifts with the suffix set to zero (d0) and the other 
representing the potential shifts with the suffix containing a valid shift value similar to the 
basic algorithm introduced at the beginning (bm4DNA). Some space is wasted in this case 
since two tables of size α need to be maintained. In addition, some time needs to be spent for 
cloning the array and adjusting the suffix to zero which leads to a slightly different 
complexity of O(2 α + m).  



The gain is that during the search phase the skip loop can be unrolled again which should lead 
to improvements on the average, while leaving best case complexity of BMH uneffected. 
In contrast to the basic algorithm, previously introduced (4DNA) the increments for 
progressing p along t are taken from the shift table whereas they are increments by one in the 
basic version. This algorithm will be referred to as bm4DNADS. 
 
Preprocessing phase 
Initially, the sentinels and the d1 table are created as in bm4DNAIS.  
 
  1 Append p to t 
  2 sentinel0 = p[0] 
  3 sentinel1 = p[1] 
//Until desired number of sentinels has been established 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
 70 Let d1[p[m]] = d1[p[m]] * -1 
 

Afterwards the d0 table is created and the suffix is set to zero as in BMH.  
 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
 70 Let d0 = d1 
 80 Let d0[p[m]] = 0 
 90 for i from 0 to m do  
100  let d1[p[i]] = m - i 
110 end for 

 
Search phase 
Instead of using simple increments for shifting as in bm4DNA or shifting character dependent 
as in bm4DNAIS, the shift is always the value stored for the suffix. This is potentially the 
largest possible shift if there are no repetitions of the suffix in the pattern. The complexity is 
the same as for bmOrg. 
10 let tp = 0 //tp: text pointer 
 20 do while tp < n – m 
 21  k = d0[t[tp]] 
 22  do while k != 0 
 22   let tp = tp + (k = d0[t[tp]]) 
 23    let tp = tp + (k = d0[t[tp]]) 
 24   let tp = tp + (k = d0[t[tp]]) 
 25  end while 
 26  if t[tp - m] != sentinel0 then , 
 27   let tp += d1[p[m]] 
 28   contiune 
 29  end if 
  
 30  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp += d1[p[m]] 
120 end while 



Since all measured data points would overload Online Supplement Table 1, only a 
representative selection of results is shown. 
 
Table 1: For each input space composed of query length and number of hits, the algorithm with the highest speed is shown 
(ms/ MB), along with its average performance and how many times it performed best out of  74 experiments (experiment 2, 
see experimental setup). Next to the best algorithm, the algorithm which won most or at least an equal amount of times is 
listed. The overall fastest processing time is highlighted. Not all data are shown for simplicity, but is available in the online 
supplement.  

Input Space Fastest Algorithm Prevalent Algorithm 

Query 
Length Hits w Algorithm Highest 

Speed 
Average 
Speed 

# of 
Wins Algorithm Highest 

Speed 
Average 
Speed 

# of 
Wins 

10 1 2 4DNAIS 1.61 2.78 19 4DNADS 2.68 3.77 27 
10 10 2 4DNAIS 1.62 2.84 21 4DNADS 2.73 3.84 26 
10 100 2 4DNAIS 1.62 2.81 19 4DNADS 2.72 3.71 27 
10 500 2 4DNAIS 1.61 2.76 19 4DNADS 2.73 3.81 27 
10 1000 2 4DNAIS 1.62 2.90 18 4DNADS 2.73 3.72 26 
50 1 3 4DNADS 1.11 2.40 8 Fast 1.94 2.51 31 
50 10 3 4DNA 1.32 2.00 8 Fast 1.90 2.36 29 
50 100 3 4DNA 1.31 1.98 10 Fast 1.92 2.37 28 
50 500 3 4DNA 1.33 1.95 11 Fast 1.94 2.37 30 
50 1000 3 4DNA 1.34 1.88 10 Fast 1.96 2.38 31 
70 1 3 4DNAIS 1.24 1.82 12 Fast 1.93 2.34 41 
70 1 3 4DNAIS 1.06 1.47 9 4DNAHMbs 1.52 1.87 55 
70 10 3 4DNAIS 1.06 1.55 8 4DNAHMbs 1.52 1.87 54 
70 100 3 4DNAIS 1.06 1.51 8 4DNAHMbs 1.52 1.89 53 
70 500 3 4DNAIS 1.07 1.51 8 4DNAHMbs 1.53 1.89 53 
70 1000 3 4DNAIS 1.08 1.45 8 4DNAHMbs 1.55 1.90 53 

100 1 3 4DNADS 1.15 1.15 1 4DNAHMbs 1.49 1.73 62 
100 10 3 4DNAIS 1.08 1.37 2 4DNAHMbs 1.46 1.65 66 
100 100 3 4DNAIS 1.08 1.26 2 4DNAHMbs 1.47 1.66 68 
100 500 3 4DNA 1.09 1.32 2 4DNAHMbs 1.48 1.66 68 
100 1000 3 4DNAIS 1.09 1.42 3 4DNAHMbs 1.48 1.67 68 
500 1 4 4DNAHMbs 0.71 1.14 73 4DNAHMbs 0.71 1.14 73 
500 10 4 4DNAHMbs 0.69 0.82 73 4DNAHMbs 0.69 0.82 73 
500 100 4 4DNAHMbs 0.70 0.83 73 4DNAHMbs 0.70 0.83 73 
500 500 4 4DNAHMbs 0.73 0.87 73 4DNAHMbs 0.73 0.87 73 
500 1000 4 4DNAHMbs 0.78 0.91 73 4DNAHMbs 0.78 0.91 73 

1000 1 5 4DNAHMbs 0.36 0.43 73 4DNAHMbs 0.36 0.43 73 
1000 10 5 4DNAHMbs 0.37 0.40 73 4DNAHMbs 0.37 0.40 73 
1000 100 5 4DNAHMbs 0.38 0.42 73 4DNAHMbs 0.38 0.42 73 
1000 500 5 4DNAHMbs 0.45 0.49 73 4DNAHMbs 0.45 0.49 73 
1000 1000 5 4DNAHMbs 0.53 0.56 73 4DNAHMbs 0.53 0.56 73 
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Figure 1: Processing speed in milliseconds per megabyte (y-axis) of text for a selected number of query lengths (10 upper 
left, 50 upper right, 100 lower left, 1000 lower right) in regards to a the number of hits (x-axis); compare for Figure 1. Note, 
that a larger number of algorithms are compared here and that less matches have been forced, with respect to Figure 1. 


