

Monitoring of Posidonia oceanica meadows in Telašćica Nature Park (Croatia)

Mediterranean Seagrass Workshop

Zrinka Jakl¹, Milena Šijan¹, Mosor Prvan¹, Maya Sertic¹, Vanja Čavrak¹, Lorena Derezanin¹, Stefano Boi¹, Ivan Guala^{2*}

¹ Association for Nature, Environment and Sustainable Development, Split, Croatia

² IMC - International Marine Centre, Oristano, Italy

* <u>i.guala@imc-it.org</u>

Introduction

The Telašćica Nature Park (Croatia) has recently undertaken the monitoring of marine priority habitats in compliance with the management plan developed within the MedPAN South project. Assessment of health conditions of *Posidonia oceanica* meadows has been implemented in 2011, 2012 and 2014, in five locations with different conditions of anthropogenic pressure. The monitoring was mainly aimed to highlight any conditions of disturbance in locations highly frequented by recreational boaters.

Methods

On the base an empirical assessment of boat frequentation, meadows were defined as "anchoring" (four locations -Čuška Dumboka, Kobiljak, Lučica, Sestrica - supposed to be subjected to high pressure of boat frequentation) or "noanchoring" (one location - Garmenjak - where frequentation is considered negligible because it is not known as preferential boater's destinations). Structural descriptors of the meadows (i.e. shoot density, % cover of *P. oceanica* and dead *matte*) were assessed in different sites at each location, by means of direct surveys in SCUBA diving.

Shoot Density SD

Classification of *Posidonia oceanica* meadows according to SD and depth (UNEP-RAC/SPA, 2011 modified)

depth (m)	High		Good			Moderate				Poor			Bad		
1	>	1133	1133	to	930	930	to	727		727	to	524	<	: 5	24
2	>	1067	1067	to	863	863	to	659		659	to	456	<	: 4	56
3	>	1005	1005	to	808	808	to	612		612	to	415	<	: 4	15
4	>	947	947	to	757	757	to	567	1	567	to	377	<	: 3	77
5	>	892	892	to	709	709	to	526		526	to	343	<	: 3	43
6	>	841	841	to	665	665	to	489	1	489	to	312	<	: 3	12
7	>	792	792	to	623	623	to	454		454	to	284	<	: 2	84
8	>	746	746	to	584	584	to	421		421	to	259	<	: 2	59
9	>	703	703	to	547	547	to	391		391	to	235	<	: 2	35
10	>	662	662	to	513	513	to	364		364	to	214	<	2	14
11	>	624	624	to	481	481	to	338		338	to	195	<	: 1	95
12	>	588	588	to	451	451	to	314		314	to	177	<	: 1	77
13	>	554	554	to	423	423	to	292		292	to	161	<	: 1	61
14	>	522	522	to	397	397	to	272		272	to	147	<	: 1	47
15	>	492	492	to	372	372	to	253		253	to	134	<	: 1	34
16	>	463	463	to	349	349	to	236		236	to	122	<	: 1	22

Results

Overall, shoot density in "no-anchoring" sites had higher values than "anchoring" sites, from 31 to 45%, in the three years of investigations. Changes in Conservation Index were smaller, 10 to 15% higher in "noanchoring" than "anchoring" sites. Among the "anchoring" locations, Čuška Dumboka and Kobiljak showed the lowest values of shoot density and Conservation Index (as a consequence of the highest abundance of dead matte), over the three years of monitoring.

Nature Park Telašćica, Croat

Conservation Index CI = P/(P+D)

(Moreno et al., 2001; Montefalcone et al., 2006)

P = % live *P. oceanica* D = % dead *matte*

CI = 0 minimum state of conservation CI = 1 maximum state of conservation

For both SD and CI, and each location, the variation during the three years Of monitoring was calculated as $(P_x - P_y)/P_x$

 P_x = mean value (of both SD and CI) of first or the second survey P_v = mean values of the following monitoring campaigns

Mean values (+se) of SD (above) and CI (below) at each time

for each pressure conditions

Summary of sampling effort in the three monitoring campaigns

Locations	PK000UK0	2011			2012			2014			
Locations	pressure	sites	quadrats	LITs	sites	quadrats	LITs	sites	quadrats	LITs	
Čuška Dumboka	anchoring	9	78	36	8	64	32	8	64	32	
Kobiljak	anchoring	7	80	27	8	64	32	8	64	32	
Lučica	anchoring	7	58	28	7	56	28	7	56	28	
Sestrica	anchoring	4	35	16	6	48	24	6	48	24	
Garmenjak	no-anchoring	6	52	23	7	56	28	8	64	32	
		33	303	130	36	288	144	37	296	148	

Classification of *Posidonia oceanica* meadows at each location and for each times of monitoring according to the rating suggested by UNEP-RAC/SPA (2011)

Location	pressure	2011	2012	2014
Čuška Dumboka	anchoring	BAD	BAD	BAD
Kobiljak	anchoring	BAD	POOR	POOR
Lučica	anchoring	BAD	POOR	POOR
Sestrica	anchoring	POOR	POOR	POOR
Garmenjak	no anchoring	MODERATE	POOR	MODERATE

Mean values (+se) of the SD (above) and CI (below) at each location for each time. Solid and striped bars are anchoring and no-anchoring locations, respectively. % changes are indicated in the event of significant differences among times

Conclusions

Results indicate clear signs of deterioration in the locations supposed to be subjected to high pressure of anchoring.

References

MONTEFALCONE M., LASAGNA R., BIANCHI C.N., MORRI C., 2006. Anchoring damage on Posidonia oceanica meadow cover: a case study in Prelo Cove (Ligurian Sea, NW Mediterranean). Chemistry and Ecology 22(1), 207-217.

MORENO D., AGUILERA P.A., CASTRO H., 2001. Assessment of the conservation status of seagrass (Posidonia oceanica) meadows: implications for monitoring strategy and the decisionmaking process. Biological Conservation 102, 325-332.

UNEP-RAC/SPA, 2011. Draft Guidelines for the Standardization of Mapping and Monitoring Methods of Marine Magnoliophyta in the Mediterranean. Tenth Meeting of Focal Points for SPAs Marseilles, France, 17-20 May 2011, RAC/SPA Publ., UNEP(DEPI)/MED WG 359/9. 1-63.

with the support of

The combined use of the two descriptors seems to be effective to get information on the conditions of the meadows and strengthens the a priori assumption that mechanical disturbance of anchors affects P. oceanica enhancing regression processes of the meadows.

The management authority is now implementing a series of actions to reduce human pressures and promote a more sustainable approach to nautical tourism. Monitoring of boat frequentation (number and size of boats, anchor

