Supplementary file for Blood targeted proteomics:

Centrifugal filter sample preparation vs dilute-and-shoot

Tore Vehus, Ole Kristian Brandtzaeg, Elsa Lundanes and Steven Ray Wilson*

Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway

(TV and OKB contributed equally to this study).

*Corresponding author. Tel.: +47 970 10 953.

E-mail address: stevenw@kjemi.uio.no (S.R. Wilson).

Figure S1: Coomassie and silver stained GE results for filtrates and concentrated samples from whole blood (a), serum (b), plasma (c) and whole blood, serum and plasma with the filter combinations (d). The whole blood filter samples were diluted 1000 times before GE so that the gel was not overloaded, while serum and plasma was 10 times diluted before GE.

			SRM Table							
Method Summary			SRM Table							
Method Settings			Compound	Retention Time (min)	RT Window (min)	Polarity	Precursor (m/z)	Product (m/ z)	Collision Energy (V)	
Method Duration (min): 11.3			AEFAEVSK	5.65	11.3	Positive	440.724	462.256	16	
			AEFAEVSK	5.65	11.3	Positive	440.724	533.293	16	
Global Parameters			AEFAEVSK	5.65	11.3	Positive	440.724	680.361	16	
			DLGEENFK	5.65	11.3	Positive	476.225	537.267	17	
Ion Source			DLGEENFK	5.65	11.3	Positive	476.225	666.309	17	
Ion Source Type: NSI			DLGEENFK	5.65	11.3	Positive	476.225	723.331	17	
Spray Voltage:			LHYGLPVVV K	5.65	11.3	Positive	562.844959	541.370809	19.8	
Positive Ion (V): 1000 Negative Ion (V): 600			LHYGLPVVV K	5.65	11.3	Positive	562.844959	654.454873	19.8	
Positive Ion			LHYGLPVVV K	5.65	11.3	Positive	562.844959	711.476337	19.8	
Positive Ion			LHYGLPVVV K	5.65	11.3	Positive	562.844959	874.539666	19.8	
Time (min) Vol	oltage (V)		LVNEVTEFA K	5.65	11.3	Positive	575.311	595.309	20	
Negative Ion			LVNEVTEFA K	5.65	11.3	Positive	575.311	694.377	20	
Negative Ion			LVNEVTEFA K	5.65	11.3	Positive	575.311	823.42	20	
Time (min) Vol	oltage (V)		HPDYSVVLL LR	5.65	11.3	Positive	656.375	712.508	23	
Ion Transfer Tube Temp (°C): 350			HPDYSVVLL LR	5.65	11.3	Positive	656.375	799.54	23	
Experiment 1			HPDYSVVLL LR	5.65	11.3	Positive	656.375	962.603	23	
Start Time (min): 0 End Time (min): 11.3			HPDYSVVLL LR	5.65	11.3	Positive	656.375	1174.683	23	
Master Scan:			LLNDEDQVV VNK	5.65	11.3	Positive	693.367181	801.446494	23.7	
SRM			LLNDEDQVV VNK	5.65	11.3	Positive	693.367181	930.489087	23.7	
Use Cycle Time: True			LLNDEDQVV VNK	5.65	11.3	Positive	693.367181	1045.51603	23.7	
Cycle Time (secs): 1 Use Calibrated RF Lens: True O1 Resolution (FWHM): 0.7			NEGVATYAA AVLFR	5.65	11.3	Positive	741.39099	747.451185	25.1	
Q3 Resolution (FWHM): 0.7 CID Gas (mTorr): 1.5			NEGVATYAA AVLFR	5.65	11.3	Positive	741.39099	910.514514	25.1	
Source Fragmentation (V): 0 Chrom Filter (secs): 3 Display Retention Time: True			NEGVATYAA AVLFR	5.65	11.3	Positive	741.39099	1011.562192	25.1	

Figure S2: Summary of SRM MS-method for in-solution digested beta-catenin and HSA.SRM table includes precursor ions (m/z) and its product ions (m/z) for beta-catenin and HSA peptides. The precursor and product ions were generated by Skyline software.

Figure S3: (a) Three injections of in-solution digested beta-catenin peptide NEGVATYAAAVLFR (741.391 m/z) to illustrate the repeatability of the LC-MS system. (b) Three fragments (747.45, 910.51 and 1011.56 m/z) confirming the beta-catenin peptide NEGVATYAAAVLFR.