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Supplementary Methods 
 
 

Discovery cohort: Transplant recipients and DNA samples. 

We selected 10 kidney transplant recipients from those who had consented to participate 

in the Clinical Trials in Organ Transplantation-04 (CTOT-04), a multicenter observational 

study of noninvasive diagnosis of renal allograft rejection by urinary cell mRNA profiling. 

We included only the recipients who had a living donor transplant and along with their 

donors, had provided informed consent for the use of their stored biological specimens 

for future research. The demographic information is shown in Supplemental Table 1. 

DNA was extracted from stored peripheral blood using the EZ1 DNA blood kit (Qiagen®) 

based on the manufacturer recommendation.  

 

Discovery cohort: Whole exome sequencing.  

DNA was enriched for exome regions with the TruSeq exome enrichment kit v3. 

Sequencing libraries were constructed using the Illumina TruSeq kit DNA sample 

preparation kit.  Briefly, 1.8  µg of genomic DNA was sheared to average fragment size of 

200  bp using the Covaris E220 (Covaris, Woburn, MA, USA). Fragments were purified 

using AmpPureXP beads (Beckman Coulter, Brae, CA, USA) to remove small products 

(<100  bp), yielding 1  µg of material that was end-polished, A-tailed and adapter ligated 

according to the manufacturer’s protocol. Libraries were subjected to minimal PCR 

cycling and quantified using the Agilent High Sensitivity DNA assay (Agilent, Santa 

Clara, CA, USA). Libraries were combined into pools of six for solution phase 

hybridization using the Illumina (Illumina, San Diego, CA, USA) TruSeq Exome 

Enrichment Kit. Captured libraries were assessed for both quality and yield using the 

Agilent High Sensitivity DNA assay Library Quantification Kit. Sequencing was 
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performed with six samples per lane using the Illumina HiSeq 2000 sequencer and 

version 2 of the sequencing-by-synthesis reagents to generate 100  bp single-end reads 

(1×100SE). 

 
Validation cohort: Transplant recipients and DNA samples. 

We studied 24 kidney transplant recipients who had a living donor transplant at the 

NewYork-Presbyterian- Weill Cornell Medical Center. This was an independent cohort 

and none of the recipients had participated in the CTOT-04 trial. Recipients were 

selected randomly based on the availability of archived paired recipient-donor DNA 

specimens obtained at the time of transplantation at our Immunogenetics and 

Transplantation Laboratory. The Institutional Review Board at Cornell approved the 

study. DNA extraction from peripheral blood was done using the EZ1 DNA blood kit 

(Qiagen®) based on the manufacturer recommendation.  

 

Validation cohort: Whole exome sequencing.  

The validation cohort was assayed with the Agilent Haloplex exome sequencing assay. 

The Haloplex assay enriches 37 Mb of coding sequence in the human genome and was 

selected for the validation cohort because it provides a strong and consistent exome 

enrichment efficiency for regions of the genome most likely to contribute to the 

allogenomics contributions in protein sequences. In contrast, the TrueSeq assay (used 

for the Discovery Cohort) enriches 63Mb of sequence and includes regions in 

untranslated regions (5’ and 3’ UTRs), which do not contribute to allogenomics scores 

and therefore do not need to be sequenced to estimate the score. Libraries were 

prepared as per the Agilent recommended protocol. Sequencing was performed on an 

Illumina 2500 sequencer with the 100bp paired-end protocol recommended by Agilent 
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for the Haloplex assay. Libraries were multiplexed 6 per lane to yield approximately 30 

million PE reads per sample. 

Allogenomics Site Minor Allele Frequencies.  

We determined the minor allele frequency of sites used in the calculation of the 

allogenomics mismatch score using data from the NHLBI Exome Sequencing Project 

(ESP) release ESP6500SI-V2. We downloaded the data file ESP6500SI-V2-

SSA137.protein-hgvs-update.snps_indels.txt.tar.gz and extracted MAF in the European 

American population (EA) and in the African American population (AA) 1. The ESP 

measured genotypes in a population of 6,503 individuals across the EA and AA 

populations using an exome-sequencing assay1. This resource made it possible to 

estimate MAF for most of the variations that are observed in the subjects included in our 

discovery and validation cohort. 

 
Overlap with EVP variants.  

Of 12,457 sites measured in the validation cohort with an allogenomics contribution 

strictly larger than zero (48 exomes, sites with contributions across 24 clinical pairs of 

transplants), 9,765 (78%) have also been reported in EVP (6,503 exomes). 

 

Sequence Data Analysis.  

Illumina sequence base calling was performed in the Weill Cornell Genomics Core 

Facility. Sequence data in FASTQ format were converted to the compact-reads format 

using the Goby framework [14]. Compact-reads were uploaded to the GobyWeb2 system 

and aligned to the 1000 genome reference build for the human genome (corresponding 

to hg19, released in February 2009) using the Last3,4 aligner (parallelized in a GobyWeb2 

plugin). Single nucleotide polymorphisms (SNPs) and small indels genotype were called 

using GobyWeb with the Goby5 discover-sequence-variants mode and annotated using 
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the Variant Effect Predictor6 (VEP version 75) from Ensembl. The data were downloaded 

as a Variant Calling format7 (VCF) file from GobyWeb2 and further processed with the 

allogenomics scoring tool (see http://allogenomics.campagnelab.org). 

 

Estimation of the allogenomics mismatch score.  

The allogenomics mismatch score ∆(r,d) is estimated for a recipient r and donor d as a 

sum of score mismatch contributions (see Figure 1C Equation 1).  

 

Equation 1 (reproduced from Figure 1C).  

 

Contributions are observed for each polymorphic site p in a set P, where P is determined 

by the genotyping assay and analysis methods, and can be further restricted (e.g., to 

polymorphisms within genes that code for membrane proteins). Score mismatch 

contributions σp(Grp,Gdp) is calculated using the recipient genotype Grp and the donor 

genotype Gdp at the polymorphic site p. Here, we consider that a genotype can be 

represented as a set of alleles that were called in a given genome. For instance, if a 

subject has two alleles at one polymorphic site, and we denote each allele A or B, the 

genotype at p is represented by the set {A,B}. This representation is general and 

sufficient to process polymorphic sites with single nucleotide polymorphisms or 

insertion/deletions.  

 

Equation 2 describes how the individual score mismatch contributions are calculated at a 

polymorphic site of interest.  

Equation 2 (reproduced from Figure 1C).  

€ 

Δ(r,d) = σ p[Grp
p∈P
∑ = genotype(r, p),Gdp = genotype(d, p)]
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A contribution of 1 is added to the score for each polymorphic site where the donor 

genome has an allele (adp) that is not also present in the recipient genome. When both 

donor and recipient genome are called at polymorphic site P, no contribution is added. 

For example, assuming a genomic site where the donor genome has two alleles, 

i.e., Gdp={A,B}, and the recipient genome is homozygote with Grp={A}. In this case, 

(Grp,Gdp)=1. Figure 1B presents additional examples of donor and recipient genotypes 

and indicates the resulting score contribution (the subscript p is omitted for 

conciseness). Score contributions are summed across all polymorphism sites in the set 

P to yield the allogenomic mismatch score (see Figure 1C Equation 1). 

 

Selection of informative polymorphisms.  

The selection of the set of polymorphic sites P is important to the effectiveness of the 

approach. In the current method, we select exonic polymorphic sites that are (1) 

predicted to create non-synonymous change in a protein sequence, (2) are located in a 

gene that code for one or more membrane proteins (defined as any protein with at least 

one predicted transmembrane segment, information obtained from Biomart8, Ensembl 

database 75). Additional filters can be applied to restrict P, which may lead to improved 

prediction of transplant clinical endpoints. Constructing additional filters will require the 

study of a larger training set of matched recipient and donor genotypes, which currently 

does not exist. It is possible that such study will indicate that other criteria than (2) also 

lead to predictive scores.  

 

 

Implementation: the allogenomics scoring tool.  

We developed the allogenomics scoring tool to process genotypes in the VCF format 

and produce allogenomics mismatch score estimates for specific pairs of genomes in the 
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input file. The allogenomics scoring tool was implemented in Java with the Goby 

framework and is designed to read VCF files produced by Goby and GobyWeb. The 

source code of the allogenomics scoring tools is distributed for academic and non-

commercial purposes at http://allogenomics.campagnelab.org. The following command 

line arguments were used to generate the estimates described in this manuscript and 

can be run from the Allogenomics_Package file provided in supplementary. The 

genotype input file necessary to reproduce these results (GobyWeb tag: JEOHQUR) will 

be distributed through dbGAP (http://www.ncbi.nlm.nih.gov/gap) to control access to 

these private genotype human subject data. A copy of the file has been provided to the 

editors of the journal who can make it available to the reviewers upon condition of 

confidentiality.  

Pre-requisite to running the command lines: (1) You must have the Java runtime 

environment installed on your computer (the software has been tested with version 1.6) 

(2) You must define the environment variable ALLO to the location where you have 

downloaded the distribution of the allogemomics scoring tool. (3) You must obtain the 

input VCF file and place it under: ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz 

Estimating allogenomics mismatch scores on the discovery cohort: 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 

-p ${ALLO}/Pair_files/Discovery_cohort.pairs.tsv \ 

-a Annotation_files/All_protein_coding_Ensembl_75.gtf \ 

--output ${ALLO}/Output/TM-Discovery.tsv \ 

--output-format TSV --only-non-synonymous-coding --vep \ 

--consider-indels --minimum-depth 10 --max-depth 500 \ 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv \ 

--clinical  

 

Estimating allogenomics mismatch scores on the validation cohort: 
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java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 

-p ${ALLO}/Pair_files/Validation_cohort.pairs.tsv \ 

-a ${ALLO}/Annotation_files/All_protein_coding_Ensembl_75.gtf \ 

--output ${ALLO}/Output/TM-Validation.tsv \ 

--output-format TSV --only-non-synonymous-coding --vep \ 

--consider-indels --minimum-depth 10 --max-depth 500 \ 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv \ 

--clinical --measured-sites SitesHaloplexExome.tsv  

 

Estimating allogenomics mismatch scores on merged discovery and validation cohorts: 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz\ 

-p Pair_files/Discovery+Validation_cohort.pairs.tsv \ 

-a ${ALLO}/Annotation_files/All_protein_coding_Ensembl_75.gtf \ 

--output ${ALLO}/Output/TM-Discovery+Validation.tsv \ 

--output-format TSV --only-non-synonymous-coding \ 

--vep --consider-indels --minimum-depth 10 \ 

--max-depth 500 \ 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv --clinical  

 

Estimating allogenomics mismatch score limited to Illumina GeneChip660W loci on the 

validation cohort: 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 

-p ${ALLO}/Pair_files/Validation_cohort.pairs.tsv \ 

-a ${ALLO}/Annotation_for_660W/Human660W_Gene_Annotation_hg19-ilmn.tsv \ 

--output ${ALLO}/Output/TM-Validation_Illumina660W.tsv \ 

--output-format TSV --only-non-synonymous-coding --vep \ 

--consider-indels --minimum-depth 10 --max-depth 500 \ 

-t ${ALLO}/Annotation_for_660W/TM-as-gene-names_for_Illumina660W.tsv \ 

--clinical --measured-sites sites-660W.tsv  
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Statistical Analyses. 

Analyses were conducted with either JMP Pro version 11 (SAS Inc.) or metaR 

(http://metaR.campagnelab.org). Figures 2, 3 and 4, as well as SF1B, SF1C, SF2B, 

SF3C were constructed with metaR analysis scripts and edited with Illustrator CS6 to 

increase some font sizes or adjust the text of some axis labels. 
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Supplementary Discussion 
 
Several Donor Recipient matching factors have been identified prior to this study as 

import for transplantation. For instance, blood group compatibility is a prerequisite unless 

pre-conditioning of the recipient is undertaken to facilitate blood group incompatible 

kidney transplantation. While HLA compatibility is a necessary requirement for 

successful bone marrow transplants, full HLA compatibility is not an absolute 

prerequisite for all types of transplantations as indicated by the thousands of solid organ 

transplants performed yearly despite lack of full matching between the donor and 

recipient at the HAL-A, B or the DR locus. In view of better patient survival following 

transplantation compared to dialysis, kidney transplants are routinely performed with 

varying degrees of HLA-mismatches including HLA mismatches for all HLA-class I and II 

antigens. Although, graft outcome is better with better HLA-matching, excellent long-

term graft outcome with stable graft function have been observed in patients with 6 HLA 

mismatches. The success of these transplants clearly suggests that factors other than 

HLA compatibility may influence the long-term clinical outcome of Kidney allografts.  

 

Case-control designs are appropriate when studying phenotypes that are expected to be 

associated with genotypes that follow a Mendelian inheritance mechanism. We note that 

transplant patients are not appropriate subjects for this experimental design. Patients 

who received a kidney transplant have two genomes in their body: their germline DNA, 

and the DNA of the donor. In cases when the transplanted kidney was from an unrelated 

donor (e.g., organs from deceased donors), it is clear that a Mendelian genetic 

transmission mechanism is not at play. Even in cases where the donor is one of the 

parents of the transplant recipient (familial transplant), the genome of the parent will 

break the assumptions of Mendelian inheritance. For instance, for genomic loci where 
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the two parents are heterozygotes (e.g., father A/B, mother A/B and the child was A/A by 

mendelian recombination), transplantation of the mother’s kidney into the child will result 

in a transplanted individual with genotype A/A from birth to transplant and genotype A/A 

(in most of the body), and A/B in the transplanted kidney, after the transplant. Because 

the transplant recipient has two genomes after transplant, it is not appropriate to assume 

that genomic markers can be identified when assuming a Mendelian inheritance 

process. Yet, this assumption has been made in most of the few transplantation genomic 

studies published to date.  

 

The allogenomics concept that we present in this manuscript assumes a different 

mechanism for the development of the immune response in the transplant recipient: 

immunological and biophysical principles strongly suggest that alleles present in the 

donor genome, but not in the recipient genome, would have a potential to produce 

epitopes that the recipient immune system would recognize as non-self. This reasoning 

explains why the allogenomics score is not equivalent to the genetic measures of allele 

sharing distance that have been used to perform genetic clustering of individuals9.  

 

Our results suggest that allogenomic mismatches in proteins expressed at the surface of 

the donor genome could explain why some recipients’ immune systems mount an attack 

against the donor organ, while other patients tolerate the transplant for many years, 

when given similar immunosuppresive regimens.  If the results of this study are 

confirmed in additional independent transplant cohorts (renal transplants, solid or 

hematologic transplants), they may prompt the design of prospective clinical trials to 

evaluate whether allocating organs to recipients with a combination of allogenomics 

mismatch scores and HLA mismatch scores improves long term graft outcome. A 
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positive answer to this question could profoundly impact the current clinical and 

regulatory framework for assigning organs to ESRD patients.  

 

While we have not attempted to optimize the set of sites considered to estimate the 

allogenomics mismatch score, it is possible that reduced and more focused subsets 

could increase the predictive ability of the score. On the other hand, it is also possible 

that most polymorphisms that contribute to the score have a low frequency in the 

population (e.g., minor allele frequency less than 5%), which would make the 

identification of common sites of mismatches unlikely. In the event that frequent sites of 

allogenomics mismatches could be found, such studies would require access to large 

datasets of genotypes for matched recipient and donor genomes that are not available to 

us at this time.  
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Supplementary Figures 

Figure S1. Model trained on the Discovery cohort applied to the Validation cohort. A)  
We  trained  a  model  to  predict  eGFR  on  the  discovery  cohort  (using  eGFR  at  36  months)  
and   used   the   trained,   fixed,   model   to   predict   eGFR   at   36  months   and   48  months   for  
recipients   of   the   Validation   cohort.   The   trained   model   was   eGFR=109.031825038751   -­‐‑  
0.0404193475856964   *   allogenomics_mismatch_score.   Correlation   between   predicted  
eGFR   and   observed   eGFR   on   the   Validation   cohort   at   36   (B)   and   48   (C)  months   post  
transplantation.  
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Figure  S2.  Model  trained  on  the  Validation  cohort  applied  to  the  Discovery  cohort.  A)  
We  trained  models   to  predict  serum  creatinine  and  eGFR  on  the  validation  cohort  and  
used  the  trained,  fixed,  model  to  predict  serum  creatinine  and  eGFR  for  recipients  of  the  
Discovery   cohort.   B)  Correlation   between   the   eGFR  predicted   by   the   fixed  model   and  
that   observed   in   the   Discovery   cohort.   Parameters   of   the   trained   models   were:  
a=82.12310,  b=-­‐‑0.002528.    
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Figure  S3.  Effect  of  genotyping  platform  on  future  replication  studies.  In  this  simulation,  we  
estimate  how  well   the  allogenomics  mismatch  score   could  be  evaluated  with   the  genotyping  
array  technology  frequently  used  in  GWAS  studies.  Analysis  are  done  on  the  Validation  cohort  
(n=24   pairs,   48   exomes).   A)   The   allogenomics   mismatch   score   evaluated   with   the   Agilent  
Haloplex   exome   platform   takes   advantage   of   17,025   genomic   sites   to   estimate   allogenomic  
contributions   in   transmembrane   proteins.   Only   sites   were   an   allogenomics   mismatch   score  
contribution  different   from  zero  are  counted.  We  filtered  the  exome  genomic  sites   to  exclude  
sites   not   found   on   the   Illumina   660W   genotyping   platform   (used   in   10).   After   filtering,   the  
allogenomics   score   is   estimated   with   1,797   remaining   genomic   sites.      B)   The   minor   allele  
frequency  (MAF)  of   the  alleles  described  at  each  set  of  genomic  site   is  shown  as  a  histogram  
(MAF   is  estimated   from  the  EVP  database,   see  Methods).  Exome  sequencing   is  an  assay   that  
directly  observes  variations  in  an  individual  DNA  sample.  The  MAF  distributions  confirm  that  
exome   sequencing   help   estimate   contributions   from   many   rare   (MAF<5%)   polymorphisms,  
whereas   the   chip   genotyping   platform   estimates   the   score   from   contributions   from   frequent  
alleles.      C)   The   correlation   obtained  with   the   score   estimated   from   the   exome   sites   and   the  
subset  of  sites  also  measured  by  the  GWAS  platform.  While  some  trend  is  still  visible  with  sites  
measured  on  the  GWAS  platform,  more  samples  would  be  needed  to  reach  significance  in  the  
combined  Discovery  and  Validation  cohorts  (n=34  pairs).  Note  that  the  magnitude  of  the  scores  
is   smaller  on   the  GWAS  platforms  because   fewer   contributions  are   summed.   In   contrast,   the  
exome   assays   (Illumina   TrueSeq   for   the   Discovery   cohort   or   Agilent   Haloplex   for   the  
Validation  cohort)  result  in  stronger  and  significant  correlation  on  the  same  set  of  samples.    
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Supplementary Tables 
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Table S1. Characteristics of Kidney transplant recipients and their donors.  
 

Characteristic Discovery cohort Validation cohort 

Number of Transplant Pairs with living donors 10/10 24/24 

Clinical factors   

Age   

Donor (SD) 41 (13)  46 (10)  

Recipient (SD) 48 (10) 51 (13) 

Living Donor type   

    Living related N (allog. mism. score [SD]) 4 (1116 [143]) 13 (939 [218]) 

    Living unrelated N (allog. mism. Score [SD]) 6 (1481 [300]) 11(1277 [170]) 

Donor sex   

    Male (%) 2 (20%)  8 (33%) 

    Female (%) 8 (80%)  16 (67%) 

Donor Race   

    Black (%) 4(40%) 5 (21%) 

    Non-Black (%) 6(60%) 19 (79%) 

Recipient sex   

    Male (%) 9 (90%) 13 (54%) 

    Female (%) 1 (10%) 11 (46%) 

Recipient Race   

    Black (%) 4(40%) 7(29%) 

    Non-Black (%) 6(60%) 17(71%) 

Number of HLA mismatches ABDR (SD) 3.9 (1.8) 3.6(1.93) 

Functional Factors   

Number of Patients at 12 months 10 24 

    Serum creatinine level at 12 months mg/dL (SD) 1.51  (0.35) 1.45 (0.41) 

    eGFR at 12 months ml/min/1.73m2 months (SD) 54.3(10) 54.3 (16.3) 

 Number of Patients at 24 months 9 23 

   Serum creatinine level  at 24 months mg/dL (SD) 1.36 (0.19)  1.45 (0.49) 

    eGFR at 24 months ml/min/1.73m2 months (SD 59 (7.7)  54.85 (15.7) 

Number of Patients at 36 months 8 22 

    Serum creatinine level at 36 months mg/dL(SD) 1.62 (0.50) 1.38 (0.40)  

    eGFR at 36 months ml/min/1.73m2 months (SD) 53.4(15) 55.3(15.9) 

Number of Patients at 48 months 0 16 

    Serum creatinine level at 48 Months mg/dL(SD) -  1.34 (0.43)  

    eGFR at 48 months ml/min/1.73m2 months (SD) - 57.4 (16.4) 
Patients with an Acute Cellular rejection episode in 
the first year of transplantation, N (%) 3 (30%) 5(20%) 

Immunosupression   

    Calcineurin Inhibitors, n (%) 9 (90%) 24 (100%) 

    Corticosteroids, n (%) 0 (0%) 5 (21%) 
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