Summary of materials, methods, analyzed and tabulated data of red light absorbancetransmittance measure through maize leaf for discovery of photosynthesis models

Nav Raj Adhikari^{1*}, Surya K. Ghimire², Shrawan Kumar Sah³ and Keshab Babu Koirala⁴

¹Department of Plant Breeding, Institute of Agriculture and Animal Science,

Tribhuvan University, Chitwan, Nepal.

²Department of Plant Breeding and Genetics, Faculty of Agriculture

Agriculture and Forestry University, Rampur, Chitwan, Nepal.

³Department of Agronomy, Faculty of Agriculture, Agriculture and Forestry University, Rampur,

Chitwan, Nepal

⁴Planning Division, Nepal Agriculture Research Council (NARC), Singhdarawar Plaza,

Kathmandu, Nepal.

*Corresponding author: <u>navraj.adhikari@gmail.com</u>

For citation:

Adhikari NR, Ghimire SK, Sah SK and Koirala KB (2015) Summary of materials, methods, analyzed and tabulated data of red light absorbance-transmittance measure through maize leaf for discovery of photosynthesis models. DOI: 10.7287/peerj.preprints.1477v1/supp-1. It can be found through the url: https://dx.doi.org/10.7287/peerj.preprints.1477v3

Patent

Adhikari et al. (2015) Summary of materials, methods, analyzed and tabulated data of red light absorbance-transmittance measure through maize leaf for discovery of photosynthesis models. DOI: 10.7287/peerj.preprints.1477v1/supp-1. It can be found from https://dx.doi.org/10.7287/peerj.preprints.1477v1

- Sup Table 1: Details of research site of the trials
- Sup Table 2: Details of planting and management of the hybrid maize of the trials grown in winter in Nepal in the year of 2012AUT-2013 SPR.
- Sup Table 3: Intercultural management of the plants of the trials
- Sup Table 4: General morphological, physiological and yield traits of the pipeline hybrids
- Sup Table 5: Frequency distribution of e1 leaf sectors of varying SPAD measure, chlorophyll and nitrogen content.
- Sup Table 6: Variance analysis of the frequencies of the leaf sectors under different SPAD ranges.
- Sup Table 7: Variance analysis of the SPAD measure of e1 leaf of pipeline hybrids as factor A and type of averages as factor B.

Sup Table 1: Details of research site of the trial A1

Trial name: Trial of single cross hybrid maize

Research site: Research field of NMRP/ NARC, Rampur Chitwan Nepal

Longitude and latitude: 27°37'N, 84°24' E

Site altitude: 228 meter asl (above sea level)

Soil texture: Sandy loam

Top soil pH: 5 to 6

Sup Table 2: Details of planting and management of the hybrid maize of the trial A1grown in winter in Nepal in the year of 2012AUT-2013 SPR.

Design of experiment: Randomized complete block design (RCBD)

Number of hybrids: 5 (Fifteen); Replications: 3

Planting date: October 03, 2012; Green manure crop: Sun hemp in the summer of 2012.

Organic manure rate: 33 t ha⁻¹

Date of organic manure application: Before the start of first land plowing

Tilth: Clod free fine tilth field

Row direction: North-South

Net plot size: 3 meter x 1.4 meter (L x B) = 4.2 m^2

Spacing: 3 meter long rows separated by 0.70 m distance

Seed drop distance or hole to hole distance: 0.25 meter

Number of seeds dropped into a hole: 2 seeds

Fertilizer dose: 120: 60: 40 kg N, P₂O₅ and K₂O ha⁻¹

Basal fertilizer dose: 60: 60: 40 kg N, P2O5 and K2O /ha through DAP and M/P

Split N-fertilizer dose and date: 30 kg N on 45 DAS, 30 kg N on 60th DAS. It is through urea

Sup Table 3: Intercultural management of the plants of the trial

Soil loosening and manual weed removal: 30 days after plantation Plant population: 57143 plants ha⁻¹, 24 plants /plot of 4.2 m² maintained on 30th day Date of earthing up: 45 days after sowing (DAS) Irrigation date: First-50 DAS. Second-70 DAS, Third-90, Forth- 110 DAS Irrigation method: Furrow irrigation through shallow tube well of 4" pipe Harvest date: September 20, 2012; Crop stand duration: 110 days

Sup Table 4: General morphological, physiological and yield traits of the pipeline hybrids

[†] Hybrid	¹ Yield	l	² Culm	Len	³ Anth	50	⁴ Silk5	50	⁵ Pop Se	en	⁶ TAI	⁷ SAI	⁸ SPAD35
Entry	(t ha ⁻¹))	(cm)		(days))	(days))	(days)		(days)	(days)	(%)
6	10.61	А	190.3	А	74.3	С	78.3	BC	178.3	В	4.7	4.0	6.9
112	9.87	Α	158.7	В	78.3	В	79.3	В	181.7	А	0.7	1.0	4.0
14	9.28	Α	164.8	В	82.0	A	83.0	А	176.3	В	2.3	1.0	7.5
113	8.56	Α	161.2	В	84.3	A	84.3	А	181.3	А	2.7	0.0	6.5
109	7.22	Α	197.2	А	71.3	D	76.7	С	175.7	В	4.3	5.3	9.1

[†]Hybrids and their entries are RL-111/RL-189 (6), RML-32/RML-17 (112), RML-4/NML-2 (14), RML-4/RML-17 (113) and RC/RML-8 (109). ¹Grain yield, ²Culm length; ³days for anthesis of 50% population; ⁴days for silk emergence of the 50% population; ⁵days for senescence of the all plants in the plot of each hybrid; ⁶tassel emergence-anthesis interval in days; ⁷anthesis-silking interval in days; ⁸percent of the frequencies of the e1 leaf sectors of SPAD below 35.

Source:

Adhikari NR, Ghimire SK, Sah SK, Koirala KB. (2015) Frequency distribution and mean comparisons of red light absorbance-transmittance of the e1 leaf sectors of five pipeline maize hybrids during early grain filling in subtropical winter. PeerJ PrePrints 3:e1836 https://dx.doi.org/10.7287/peerj.preprints.1468v2

Mean	Trimmed	Standard	Coefficient	Min	Max	Skewness	Kurtosis
	Mean	deviation	of variation				
SPAD m	easure						
46.6	47.2	8.68	18.61	5	71.3	-1.38	4.09
47.0	47.2	6.46	13.75	5.9	62.7	-0.82	2.34
48.4	49.3	9.07	18.71	4.5	67.6	-1.62	3.69
47.0	47.7	8.82	18.76	2.2	68.8	-1.43	4.07
45.7	46.2	9.15	20.04	3.2	69	-1.06	2.62
	Mean SPAD m 46.6 47.0 48.4 47.0 45.7	Mean Trimmed Mean SPAD 46.6 47.2 47.0 47.2 48.4 49.3 47.0 47.7 45.7 46.2	Mean Standard Mean deviation SPAD 47.2 46.6 47.2 47.0 47.2 48.4 49.3 47.0 47.7 47.0 47.7 47.0 9.07 47.0 47.7 47.0 9.15	Mean Trimmed Standard Coefficient Mean deviation of variation SPAD ====================================	Mean Trimmed Standard Coefficient Min Mean deviation of variation variation SPAD sure standard f variation f 46.6 47.2 8.68 18.61 f 47.0 47.2 6.46 13.75 f 48.4 49.3 9.07 18.71 4.5 47.0 47.7 8.82 18.76 2.2 45.7 46.2 9.15 20.04 3.2	Mean Trimmed Standard Coefficient Min Max Mean deviation of variation item item item SPAD ====================================	Mean Trimmed Standard Coefficient Min Max Skewness Mean deviation of variation -

Sup Table 5: Frequency distribution of e1 leaf sectors of varying SPAD measure, chlorophyll and nitrogen content.

Source:

Adhikari NR, Ghimire SK, Sah SK, Koirala KB. (2015) Frequency distribution and mean comparisons of red light absorbance-transmittance of the e1 leaf sectors of five pipeline maize hybrids during early grain filling in subtropical winter. PeerJ PrePrints 3:e1836 https://dx.doi.org/10.7287/peerj.preprints.1468v2

	Chlorophyll content ($\mu g \text{ cm}^{-2}$)									
6	48.49	48.86	12.18	25.12	3.56	97.09	-0.46	1.46		
112	48.55	48.63	9.50	19.56	4.23	76.35	-0.23	0.66		
14	51.39	52.03	12.80	24.91	3.19	87.60	-0.83	1.56		
113	49.14	49.52	12.41	25.26	1.54	90.57	-0.52	1.38		
109	47.17	47.42	12.85	27.23	2.25	91.08	-0.26	0.64		
	Nitrogen	content % c	lry weight							
6	Nitroger 2.03	1 content % c 2.04	dry weight 0.37	18.03	0.76	3.38	-0.45	1.11		
6 112	Nitrogen 2.03 2.03	2.04 2.03	lry weight 0.37 0.29	18.03 14.24	0.76 0.77	3.38 2.84	-0.45 -0.26	1.11 0.50		
6 112 14	Nitrogen 2.03 2.03 2.11	2.04 2.03 2.14	lry weight 0.37 0.29 0.38	18.03 14.24 18.16	0.76 0.77 0.76	3.38 2.84 3.14	-0.45 -0.26 -0.86	1.11 0.50 1.43		
6 112 14 113	Nitrogen 2.03 2.03 2.11 2.05	2.04 2.03 2.14 2.06	lry weight 0.37 0.29 0.38 0.37	18.03 14.24 18.16 18.19	0.76 0.77 0.76 0.73	3.382.843.143.22	-0.45 -0.26 -0.86 -0.51	1.11 0.50 1.43 1.09		

¹The mean values were computed from 1500 observations for each hybrid. Hybrids and their entries are RL-111/RL-189 (6), RML-32/RML-17 (112), RML-4/NML-2 (14), RML-4/RML-17 (113) and RC/RML-8 (109).

Sup Table 6: Variance analysis of the frequencies of the leaf sectors under different SPAD ranges.

SOV	DF	Sum of	Mean	Variance	F
		Squares	Square	ratio	probability
REPLICATIONS	2	0	0	0	
HYBRIDS	4	0	0	0	1
SPAD CLASSES	3	473915	157972	46.07	<.001
HYBRIDS x CLASSES	12	26450	2204	0.64	0.792
RESIDUAL	38	130297	3429		

SPAD classes included in the variance analysis from which plot frequencies of the leaf sectors used in the ANOVA are 0-30, 30-40, 40-50 and above 50.

Sup Table 7: Variance analysis of the SPAD measure of e1 leaf of pipeline hybrids as factor A and type of averages as factor B.

SOV	DF	Sum of Square	Mean Square	F VALUE	PROBABILITY
REPLICATIONS	2	761.5	380.75	28.76	
HYBRIDS (A)	4	221.56	55.39**	4.18	0.003
AVERAGES (B)	23	957.83	41.64**	3.15	<.001
A x B	92	1138.39	12.37 NS	0.93	0.641
RESIDUAL	238	3150.43	13.24		

For variance analysis; each measure of the five plants have been averaged to compute plot value. Then Variance analysis table has been constructed defining hybrids as factor A (5) and averages as factor B (24).