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Figure S1. Species rarity. In the main body of the manuscript we present results for how rarity 

(log-modulo of skewness; right) scales with sample abundance, i.e., the number of individual 

organisms or gene reads in a sample (N) (see Fig. 1a). The log-modulo transformation adds a 

value of one to each measure of skewness and converts negative values to positive values, 

making them all positive and able to be log-transformed. The analysis showed similar scaling but 

a greater intercept for microbes, revealing greater rarity. We also quantified rarity as a 

logarithmically transformed measure of skewness, as derived in Magurran and McGill (2011) 32 

(Measuring Species diversity) (left), however, this relationship which also showed increasing 

rarity (as decreasing log-skew) was substantially weaker than the relationship based on the log-

modulo transformation of skewness. Consequently, we used the log-modulo measure in the main 

body and for the main result. 

 

	
  
	
  
	
  

	
  
	
   	
  



Figure S2. Dominance. In the main body of the manuscript we present results for the abundance 

or number of individuals or gene reads belonging to the most abundant species (Nmax) or species-

level taxonomic group scales with sample abundance, i.e., number of individual organisms or 

gene reads detected (N) (see Fig. 1b). We observed strong and largely similar scaling slopes for 

microbes and macrobes, and because Nmax is an absolute measure of dominance and because the 

relationship is nearly isometric (i.e. nearly 1:1), we would expect no relationship for relative 

measures of dominance (D ~ Nmax/N), which is supported here by regressions having little 

statistical strength, but where the data are not homogenously spread across the y-axis.  

 

	
  
 

  



Figure S3. Species evenness. In the main body of the manuscript we present results for how 

similarity in abundance (i.e. evenness) relates to sample abundance, i.e., number of individual 

organisms or gene reads detected (N) (see Fig. 1c). We observed similar slopes microbes than 

macrobes, as also seen here, when using Heip’s evenness index and Smith and Wilson’s O 

evenness index. Slopes differ more greatly when using Smith and Wilson’s evenness index, 

which gives greater weight to rare species than does Simpson’s evenness. 

	
  
	
  

	
  
	
  
	
  
	
  
	
   	
  



Figure S4. Species Richness. In the main body of the manuscript we present results for how 

observed numbers of species or species level taxonomic units (for microbes) relate to sample 

abundance, i.e., number of individual organisms or gene reads detected (N) (see Fig. 1d). We 

observed a steeper relationship and stronger scaling for microbes than macrobes. These results 

were qualitatively similar to estimates of richness: Chao1, ACE, Jackknife1, and Margalef’s. 

These additional results reveal the same qualitative pattern and for all but Margalef’s index, the 

same quantitative result. 

 
	
  

	
  
	
  
	
  
	
   	
  



Figure S5. Robust responses to samples size. Our analysis revealed that while passing 

parametric tests depended on sample size, where larger samples resulted in p-values less than the 

alpha value (0.05) the regression model coefficients and the coefficients of determination (R2) 

were independent of sample size. More specifically, ordinary least squares regression includes 

several assumptions, not all of which are fatal when violated. These include linearity, normally 

distributed error terms, and no serial correlation in error terms. We tested assumptions of 

linearity, normality, homoscedasticity (no change in error structure across the x-axis), and serial 

correlation, across a range of sample sizes because larger samples are more likely to uncover a 

real difference (greater statistical power) but are more likely to fail parametric tests of regression 

assumptions.  

 
 

 
 



Figure S6. Testing the effect of categorical variable through random reassignment. Here, 

we randomly reassigned sites to the microbe/macrobe categorical variable and reveal 1.) that 

identical model parameters can be obtained and 2.) the general form of the relationships when 

the categorical variable is basically ignored. The plots of data in each subfigure represent a single 

random sample from microbe and macrobe data compilations. The model formulas represent 

average coefficient values from 1,000 random resamplings (with reassignment of the 

microbe/macrobe category). 

 

 
 
 



 Figure S7. A-H. Results per dataset. The following figures (each with four subplots) show 

how aspects of diversity relate to sample abundance (N), i.e., the number of individual organisms 

or gene reads detected. The metrics are the same as those used in Fig. 1 in the main body, that is 

rarity (log-modulo skewness), dominance (Nmax), Simpson’s evenness metric, and observed 

richness (S). While the exact form and strength of the relationships vary, each dataset follows the 

same direction, i.e., for each relationship: increasing for rarity, dominance, and richness, and 

decreasing evenness. The only exception is no relationship of rarity to N for the Forest Inventory 

and Analysis. 

 

Sub-figure A. Mammal Community Database (MCDB) 
 

 
  



Sub-figure B. Alwyn Gentry’s Forest Transects (GENTRY) 
  

 
 
 
 
 
  



Sub-figure C. USDA Forest Inventory and Analysis dataset (FIA) 
 

 
 
 
 
  
  



Sub-figure D. National Audubon Society’s Christmas Bird Count (used with permission) (CBC) 
 

 
 
 
 
  



Sub-figure E. North American Breeding Bird Survey (BBS) 
 

 
 
 
 
 
 
 
  



Sub-figure F. Data obtained from projects uploaded to the National Argonne Laboratory’s MG-
RAST metagenomic server (MGRAST).  
 

 
 
 
  



Sub-figure G. Human Microbiome Project (HMP) 
 

 
 
 

 



Sub-figure H. Earth Microbiome Project, closed reference OTU data (EMPclosed) 
 

 
 
 
 
  



Figure S8. Binning taxa according to 95, 97, and 99 percent sequence similarity among 16S 

rRNA genes did not effect our results. Here, we use a subset our data from MG-RAST to show 

that relationships of diversity do not differ when using 95, 97, or 99% similarity. The metrics are 

the same as those used in Fig. 1 in the main body, that is rarity (log-modulo skewness), 

dominance (Nmax), Simpson’s evenness metric, and observed richness (S). 

 
 

 
  
 
  



Figure S9. Including and excluding singleton taxa among microbes did not effect our 

results. Taxonomic units resulting from molecular surveys and characterized by a single 16S 

rRNA read are often considered dubious in microbial community studies. However, we found no 

consistent and noticeable differences when either including or excluding microbial singletons. 

The metrics are the same as those used in Fig. 1 in the main body, that is rarity (log-modulo 

skewness), dominance (Nmax), Simpson’s evenness metric, and observed richness (S). 

 

  



 
Figure S9. Flow of using observed N to obtain predicted Nmax, and then use those values to 
parameterize the lognormal model. 
 

 
  

1.)!Choose!a!value!of!N,!at!
random,!within!the!range!of!
previously!es7mated!values.!

2.)!Obtain!Nmax!from!N!using!
the!dominance!scaling!law.!

3.)!Use!Nmax!and!N!to!find!S,!using!
the!lognormal!model!approach!of!
Cur7s!et!al.!2002;!!!!!!!!!!!!!!!!!!!!!!!
assumes!Nmin!=!1!!!

4.)!Go!back!to!#1,!repea7ng!
1,000!7mes!to!find!mean!
and!standard!error.!

Obtaining!bootstrapped!predic7ons!of!S(for!a!microbiome!or!microbial!community!where!
values!of!total!abundance!(N)!have!been!reported.!Below,!Nmax(!is!the!predicted!
abundance!of!the!most!abundant!species.(



Table S1. Comparing fits of Power-law, Semi-log, Exponential and linear models. The 
power-law model provides the best fit to the data in regards to rarity, dominance, richness, and 
evenness. In regards to evenness, the power-law model explains a degree of variation similar to 
that of the exponential model (73% vs. 75%), but its AIC and BIC scores were nearly ten times 
less than those of the exponential; making it the preferred model. 
 
 

Rarity	
   R-­‐squared	
   AIC	
   BIC	
  
power-­‐law	
   0.625	
   -­‐292.092	
   -­‐274.504	
  
Semi-­‐log	
   0.457	
   3530.146	
   3547.733	
  

exponential	
   0.508	
   -­‐129.035	
   -­‐111.447	
  
linear	
   0.345	
   3642.024	
   3659.612	
  

	
  	
  
	
   	
  

	
  	
  
Dominance	
   R-­‐squared	
   AIC	
   BIC	
  
power-­‐law	
   0.938	
   304.839	
   322.427	
  
Semi-­‐log	
   0.548	
   15516.828	
   15534.416	
  

exponential	
   0.679	
   1286.795	
   1304.383	
  
linear	
   0.832	
   14901.395	
   14918.983	
  

	
  	
  
	
   	
  

	
  	
  
Evenness	
   R-­‐squared	
   AIC	
   BIC	
  
power-­‐law	
   0.734	
   133.599	
   151.187	
  
Semi-­‐log	
   0.75	
   -­‐1068.973	
   -­‐1051.385	
  

exponential	
   0.582	
   405.159	
   422.747	
  
linear	
   0.531	
   -­‐690.923	
   -­‐673.335	
  

	
  	
  
	
   	
  

	
  	
  
Richness	
   R-­‐squared	
   AIC	
   BIC	
  
power-­‐law	
   0.602	
   690.997	
   708.585	
  
Semi-­‐log	
   0.254	
   9232.117	
   9249.705	
  

exponential	
   0.442	
   893.132	
   910.72	
  
linear	
   0.163	
   9301.414	
   9319.002	
  

 
 
 


