Sequencing Error Adjusted and Multiple Comparison Corrected
Read Depth Estimation

Introduction

A critical component in planning Next Generation Sequencing (NGS) experiments is determining
appropriate read depth. This is particularly important for reliably detecting what if any
differences exist between two biological samples, for example normal versus tumor tissue. The
problem of determining appropriate read depth can be thought of as a sample size estimation
problem with two important considerations. The first is the inclusion of systematic sequencing
errors (SSE) on read accuracy; this can include quality score and other metrics. The second is
controlling for multiple comparisons, which in the context of NGS is especially important as we
are comparing millions/billions of locations between the two samples.

In this analysis we develop a Bayesian method for helping to determine read depth and
associated power estimates, taking into account both sequencing error and false discovery rate.
Our specific focus will be to provide read depth estimates in the context of sample
homogeneity assessment; i.e. looking at two sequences grown from the same batch and
determining how deeply those sequences need to be sequenced in order to detect whether any
differences exist.

Sampling Distribution

As this type of analysis is done prospectively to help determine appropriate read depth
coverage for the final sample preparations, we work with simulated data only as no
measurements have been taken. In order to arrive at an estimate of read depth we need a way
to simulate observed purities, i.e. adjusted for SSEs and other distributional factors associated
with an NGS experiment. Our objective is to compare the purities, simulated from two vials and
determine if differences could be detected as we slowly change the underlying true purity of
one vial, while holding the other fixed. Stated in terms of a hypothesis test we have

H,: purity of vial; = purity of vial, vs. H,: vial purities not equal.

To generate these purities we used a Bayesian sampling scheme as a first step in our analysis,
this is done prior to any adjustment for multiple comparisons which we describe in the
following section. We now describe the sampling procedure.

We begin by defining the terms of our model (note that these all pertain to the sampling
of a purity associated with a base at a given position in the genome for a single vial), letting
denote r read depth we have

B; = The event that the reference base b € {A4,C, T, G} is matched inread i,i = 1, ..., T,
E; = The occurence of a sequencing error atread i,i = 1, ..., 1,



For each of these we assume the following probability distributions:

(B;|E; = 0,pp)~Bernoulli(py),i = 1, ...,r
(B;|E; = 1,pp)~Bernoulli(1 —p),i =1, ...,r
E;~Bernoulli(e),i =1, ...,r

Pr(p,) = Beta(a, B)

The conditional distributions of the data can be understood as follows. For the case given by
(B;|E; = 0,py), i.e. where no sequencing errors have occurred, the probability of observing the
correct reference base is related to the purity of that base, p, and follows a
Bernoulli(py) distribution. For the case where a sequencing error has occurred,
(B;|E; = 1,pp) the conditional distribution captures the event that the incorrect base is
sampled but is identified as the reference base. For this reason the appropriate distribution for
capturing this event is Bernoulli(1 — p,). An illustration of our model is shown in Figure 1
below.
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Fig. 1: Model for purity of a base and sequencing errors.

Of primary interest is to compute the posterior of p;,, given the observed data B; conditional on
the error parameter E;, which can be shown to be
Pobs ~ Pr(pp|B;,i = 1,...,7)
T
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In order to sample p,,s we must first generate our observed data B;. To do this we begin by
sampling a set of r sequencing errors E; with a fixed error rate € (though it should be noted
that these errors could be allowed to vary at each position based on quality scores, etc.). With
these we then sample our observed data as
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Here B(a, f3) is the beta function which is defined as
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now use Markov Chain Monte Carlo (MCMC) to sample p,ps. For our analysis MCMC was
implemented using the rjags package in the R programming language.

t?~le~tdt being the gamma function. With the observed samples B; we can

Generating null and alternative distributions

With a way to sample the observed purities p,ps, Our objective is to estimate the probability of
detecting differences in purities between vials as we vary the true purity p;, (i.e. the power of
the test).

To do this we begin by estimating the null distribution, i.e. when the distribution of p,, is the
same for both vials 1 and 2, specifically a; = a, and f; = f3,, here the subscripts denote the
corresponding vials parameters for the Beta distribution (note, this sampling is for a given read
depth r). Recall that the expected value of the beta distribution is ﬁ, so that the ratio of these

parameters defines the underlying pure probability. In our analysis we consider two scenarios

1. Vial 1 it ith tation —— = 0.99, with vial 2 tation —2— €
1a purity pb Wi expectation a1+, , WI Via expectation at B
{0.98,0.96, ...,1}.
2. Vial 1 it ith tati “1_ = 0.50, with vial 2 tati 2 e
1a purity pb Wi expectation a1+, , WI Via expectation S

{0.48,0.46, ... 1}.

These are meant to capture the two cases of observed purities we would expect to see in
experimental settings.

Given scenarios 1 and 2, let pgbs‘j(l) and pgbs,j(Z), j=1,..,] denote draws from the null
distribution for vials 1 and 2 respectively, define df = pg,s (1) — pops;(2) to be the
difference in the observed purities and d°® = (d?, ...,djo) the collection of these differences. In
a similar fashion we make draws from the alternative distribution, altering the expectation for
vial 2 as defined above; for this case define d! = (d%,...,d}) as the collection of these
differences. With d° and d* we can now estimate the distribution of the differences for the null
and alternative hypotheses. To do this we use the binned kernel density estimate function,
bkde inR.

Computing the power of the test

Pictorially the power of our test, i.e. the probability of detecting a difference when one exists is
shown below in Figure 2. Here the starting point of the green region (the power) is determined
by the pre-determined level of significance y, i.e. the probability of rejecting the null when no
differences exist. Typically this value is taken to be y = 0.05, but as will be discussed in the



following section, in order to account for multiple comparisons we use an adjustment of this to
determine the starting point for our power estimate.

Irrespective the cutoff associated with a particular value of y is established by finding the
quantile from the binned kernel density fit to the sampled differences in d°. The area under the
alternative distribution for d? is then computed and corresponds to our estimate of power.
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Fig. 2: Pictorial description of the power to detect significant difference between two
distributions.

Adjusting for multiple comparisons
In order to adjust for multiple comparisons we use the well-known Benjamini-Hochberg (BH)
adjustment for controlling False Discovery Rate (FDR). FDR procedures are designed to control
the expected proportion of incorrectly rejected null hypotheses, i.e. false discoveries. In
contrast, multiple comparison correction using family wise error rate (FWER) based procedures,
such as the Bonferroni correction, seek to reduce the probability of even one false discovery, as
opposed to expected proportion of false discoveries. Thus FDR procedures have great power at
the cost of increased rate false positives.

In its most common form the BH adjustment calls for taking the computed p-values and
ordering, smallest to largest as Py < Py < < P4, where G denotes the number of
positions in the genome we are computing pairwise comparisons for. The procedure then

proceeds by finding the largest k such that Py < gy. Intuitively we can think of the proportion

k . S . .
Zas representing the number of pairwise differences we might expect to see correctly rejected.

Put another way, if some number of difference are observed between vials at various positions
in the genome, this proportion informs how many of those differences we expect to be real
versus artifacts of the large number of comparisons or feature of the experimental process. So,

for example, taking §= 1.0 would basically say that we believe all detected differences are

real. The impact that this adjustment has on our power estimate is shown in Figure 3.
As the number of actual differences between sequences should be small so to should

. k H " ” H i
the ratio p however, certain “real” differences do occur so that k > 0. So, while many

differences may be detected, largely as a result of the massive number of comparisons being
made, we believe only a small number of these reflect actual differences. For our purposes we



conservatively set % = 0.05, i.e. of the differences that are detected, we believe that only 5%

may be attributable to real events (and many of these may be related to sequencing artifacts).
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Fig. 3: Pictorial depiction of decrease in power to detect differences due to multiple
comparisons.



