
Algorithm 1 Graph Splitting

Input: Semantic Subgraph, Q
1: if |V (Q)| ≤ 4 then
2: D = {Q}
3: else
4: Q is converted to an undirected graph
5: if cliqueCheck (Q) then
6: cliqueSplit (Q)
7: else
8: ON = vmax(Q); v1; v2;max = −1
9: for i ∈ V (∀j(j ∈ V ∧ i 6= j)) do

10: if shortestPath (i, j) > max then
11: max = shortestPath (i, j); v1 = i; v2 = j
12: end if
13: end for
14: D1 = all nodes in δ(v1, ON)
15: D2 = all nodes in δ(v2, ON)
16: for v ∈ V do
17: if v /∈ (V (D1) ∪ V (D2)) then
18: allocate left over nodes
19: end if
20: end for
21: D = {D1, D2}
22: while |(V)d| ∈ D > 4 do
23: return Graph Splitting(d)
24: end while
25: end if
26: end if
Output: D

Graph Split

In Graph Splitting the shortest path is calculated using the implementation of Dijkstras shortest path algorithm (Dijkstra, 1959)
provided by the JGraphT library. If a semantic subgraph is found to be a clique then an ON is picked at random and D is made
up of a random partitioning of Q, such that |V (D1)| and |V (D2)| are equal if n is odd or |V (D1)| = (|V (D2)| + 1) if n is even
(ON is in both graphs). If Q is not a clique then semantic subgraph membership of remaining nodes depends upon the edges in
which they participate. Given semantic subgraphs D1 and D2, node subgraph membership is allocated using the following rules:

1. If a node shares an edge with only one of D1 or D2 it will be allocated to that subgraph.

2. If a node shares an edge with nodes from both D1 and D2 it will be allocated to the subgraph with which it shares the
greatest number of edges.

3. If a node shares an equal number of edges with nodes in D1 and D2 it will be allocated to the subgraph containing the
fewest nodes.

4. If a node shares an equal number of edges with nodes in D1 and D2 and D1 and D2 have an equal number of nodes it will
be allocated D1.

Edges (e ∈ E(Q)) are then allocated to D1 if both nodes of e, vi, vj , are v ∈ V (D1) or to D2 if both nodes of e, vi, vj, are
v ∈ V (D2). When vi, vj are not present in the same graph then e is not included in the split graphs. Instead e will be checked
for during the mapping stage of the algorithm. If either of the subsequent graphs still have a nodeset greater than 3 after an
initial split, the algorithm may be called again and the resulting subgraphs are searched for and results mapped systematically.

In Fig. 1 (below), it is clear that searching using a purely topological approach (Normal 0.0) is infeasible for a subgraph with
a |V (Q)| of 7 when the target graph reaches a nodeset size of 2 x 103. Performance is improved when searching using a semantic
threshold of 0.8 (Normal 0.8). However, search time is still costly when the target graph reaches a nodeset size of 3 x 104. When
Graph Splitting is used prior to a semantic search with a semantic threshold of 0.8 (Split), a search for semantic subgraphs with
a |V (Q)| of 7 can be completed on a large target graph (1 x 105) in a reasonable, finite time.

These results show that Graph Splitting allows us to search for subgraphs that were previously intractable using an exhaustive
exact approach; both topologically and, to a lesser extent, semantically.

The Venn Diagrams (Fig. 2 below) demonstrate that the same results are obtained (i.e. the same set of matches are returned)
when using Graph Splitting or a non-split approach.

1e+03 2e+03 5e+03 1e+04 2e+04 5e+04 1e+05

1
e
−

0
1

1
e
+

0
1

1
e
+

0
3

|V (G)|

lo
g

1
0
 (

S
e
a
rc

h
 T

im
e
)

|V (S)|=7_Normal_0.0

|V (S)|=7_Normal_0.8

|V (S)|=7_Split

Figure 1: Graph Splitting search time in comparison to a non-split approach. Note: Semantic subgraphs were created
at random with a |V (Q)| of 7. A purely topological search was then completed without Graph Splitting (Normal 0.0). Semantic
searches were then carried out without Graph Splitting (Normal 0.8), and finally, with Graph Splitting (Split). Searches were
carried out on random target graphs where |V (G)| was between 1 x103 and 1x 105.

Normal_Search

Split_Search

0

0

100

|V (S)|= 6

Normal_Search

Split_Search

0

0

100

|V (S)|= 7

Normal_Search

Split_Search

0

0

100

|V (S)|= 6

Normal_Search

Split_Search

0

0

100

|V (S)|= 7

Figure 2: Graph Splitting matches in comparison to matches returned using a non-split approach. Note: Semantic
subgraphs were created at random with a |V (Q)| of 6 and 7, respectively. Semantic subgraphs were then searched for using
either Graph Splitting (Split search) or a non-split approach (Normal Search) using the algorithm with one parameter; every
element of the match needed to pass the ST (left). Returned sets of matches were compared and the percentage of matches
between the two sets calculated. All tests were run using the algorithm with two alternate parameters i) where every element of
the match needed to pass the ST (left), and ii) all elements had to cumulatively pass the ST (right).

