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1. Benchmark Haploid Genome Sequencing Using Tiles

Suppose there are a certain number of cells of a haploid organism in a
test tube, and an organizer runs a contest for sequencing these cells (e.g.,
the XPrize). The procedure of the contest is as follows.

(1) Each contestant attempts to find the mode genome (i.e., the most
frequent genome) among all cells at a single tile position along with
the mode frequency.

(2) The organizer benchmark each contest’s result by comparing it to
the organizer’s result and judge the accuracy of the contest’s answer.

Here we provide a mathematically rigorous framework for step (2) by carry-
ing out hypothesis testing at the tile position. We assume these cells have no
spanning tiles at this tile position. Moreover, we assume mutations are rare,
and we shall quantify this assumption later. Note that the model described
here does not apply to cancer cells.

Example 1.1. Suppose there are 20 cells in the test tube. For simplicity,
the given tile position has 17 ATTC, 2 TGCC, and 1 GCTA. In this case,
the mode genome is ATTC with frequency 85%.

Due to the current sequencing technology, the sequence of these cells can
only be observed through measurements. In other words, we do not know
which one of the cells we are measuring each time, but we do know that
the random sampling follows the distribution given by the cells in the test
tube. More precisely, all tile variants at our tile position of interest are
amplified and sequenced without bias, so that the measurements we obtain
from sequencing are present in the same proportion as the cell genomes.
Thus

(1.1) each measurement in the test tube defines a random variable X.

In the above example, we have probability p(X = ATTC) = 85%, p(X =
TGCC) = 10%, and p(X = GCTA) = 5%.

The above type of sequencing may be achieved by using single-molecule
template sequencing methods, which do not require PCR amplification and
thus do not suffer the same AT-rich and GC-rich amplification biases as
clonally amplified templates [1]. Additionally, we assume there are no se-
quencing errors.

Through measurements, each contestant shall estimate the mode and a
lower bound of the probability of the mode. We specify that the contestants
report their results in the following format.
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Definition 1.2. Given a set of measurements {xi}i=1,...,N , we define a re-
port to be a tuple R = (N,MG, θ, α). Here N is the sample size, MG
is the sample mode genome, θ ∈ (50%, 100%] is the mode frequency
bound, and α ∈ [0%, 5%] is the significance level. We require θ to be
an lower bound for the frequency of the sample mode genome MG. More
precisely, we require

θ ≤ m
N ,

where m is the number of occurrences of MG in the sample {xi}i=1,...,N .

In the above definition, the requirement θ > 50% is a way of saying that
the observed mutations are rare and there is a predominant sample mode
genome. The mode frequency bound is chosen by the contestant so long as
it satisfies θ ≤ m

N . The significance level α is also chosen by the contestant,
and it will be used in hypothesis testing later.

Example 1.3. Suppose we measured the 20 cells in Example 1.1 for 100
times, and we get 90 ATTC, 6 TGCC, and 4 GCTA. In this case, N = 100,
MG = ATTC, the number of MG is 90 (with frequency 90%), and we choose
to report the mode frequency bound as θ = 88% and significance level as
α = 1%.

We now use p-value to carry out statistical hypothesis testing on a report.
Each report R = (N,MG, θ, α) establishes a hypothesis H1 on the cells in
the test tube.

(1.2) H1: the probability p(X = MG) ≥ θ,
where X is the random variable of a single measurement in the test tube as
in (1.1). The opposite of the hypothesis H1 is the null hypothesis

(1.3) H0: the probability p(X = MG) < θ.

In order for a test statistic to support H1, we need the p-value less than or
equal to the significance level, i.e.,

(1.4) Test statistic supports H1 if p(test statistic |H0) ≤ α.

Remark 1.4. The complete hypothesis H1 is in fact the following state-
ment: the mode genome in the test tube is mode(X) = MG, and the prob-
ability p(X = MG) ≥ θ. By our choice in Definition 1.2 we have θ > 50%.
Thus p(X = MG) ≥ θ > 50% implies mode(X) = MG. Hence we drop that
part of the statement in the hypothesis since it becomes redundant.

In the sequencing contest, each contestant’s report Rc = (Nc,MGc, θc, αc)
is compared to the benchmark report Rb = (Nb,MGb, θb, αb), which typi-
cally has higher quality. We now study when the statistic of the benchmark
report Rb supports the hypothesis H1 of the contestant report Rc. To do
so, we use the statistic of report Rb as a test statistic as follows. Define a
random variable Y which counts the number of occurrences of MGb in a set
of Nb samples

(1.5) Y = #{i ∈ {1, . . . , Nb} : Xi = MGb}.
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Here each Xi is an i.i.d random variable with the same distribution as X in
(1.1), defined by measuring the cells in the test tube. Report Rb indicates
Y = m for some integer m ≥ θbNb, because θb is the lower bound of the
mode genome frequency in Definition 1.2. According to (1.3) and (1.4), in
order for the statistic of report Rb to support the hypothesis H1 of report
Rc, we need the following inequality to hold

p
(
Y = m | p(X = MGc) < θc

)
≤ αc,(1.6)

for all integer m with θbNb ≤ m ≤ Nb.

The following result gives a condition which guarantees the benchmark re-
port to support the contestant report.

Theorem 1.5. Let Rb = (Nb,MGb, θb, αb) and Rc = (Nc,MGc, θc, αc) be
two reports. Then the statistic of report Rb supports the hypothesis H1 of
report Rc if the following three conditions are satisfied.

(1) MGb = MGc,
(2) θb ≥ θc, and
(3) B(dθbNbe |Nb, θc) ≤ αc,

where d·e is the ceiling function, and B(m |N,µ) =

(
N
m

)
µm(1− µ)N−m is

the binomial distribution.

Proof. Since the mode genome of two reports agree MGb = MGc, we shall
denote it as MG for short. Given the condition in the statement, we now
prove inequality (1.6). Denote µc := p(X = MG). The condition in the
conditional probability in (1.6) gives

(1.7) µc < θc.

The random variable Y = #{i ∈ {1, . . . , Nb} : Xi = MG} in (1.5) obeys a
binomial distribution

p(Y = m) = B(m |Nb, µc) =

(
Nb

m

)
µmc (1− µc)Nb−m.

To prove that the statistic of report Rb supports the hypothesis H1 of report
Rc, it suffices to show that for all integer m with θbNb ≤ m ≤ Nb, we have

(1.8) p(Y = m) = B(m |Nb, µc) ≤ αc
as in (1.6). We shall prove it by showing the following inequalities

(1.9) B(m |Nb, µc) ≤ B(m |Nb, θc) ≤ B(dθbNbe |Nb, θc) ≤ αc.

The first inequality in (1.9) holds because by (1.7) and the assump-
tion θb ≥ θc we have µc < θc ≤ θb ≤ m

Nb
. Then Lemma 1.6 (1) implies

B(m |Nb, µc) ≤ B(m |Nb, θc).
We show the second inequality in (1.9) as follows. Since m is an integer

with m ≥ θbNb, we have m ≥ dθbNbe. Moreover, the assumption θb ≥ θc
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implies θbNb + 1 ≥ θcNb + θc. Thus we have θbNb ≥ θc(Nb + 1) − 1 and
dθbNbe ≥ dθc(Nb + 1)e − 1. Therefore the inequalities

(1.10) m ≥ dθbNbe ≥ dθc(Nb + 1)e − 1

combined with Lemma 1.6 (2) imply B(m |Nb, θc) ≤ B(dθbNbe |Nb, θc).
The last inequality in (1.9) is precisely condition (2) in the assumption.

This proves (1.8) and finishes the proof. �

Here we state the relevant properties of the binomial distribution.

Lemma 1.6. The binomial distribution

B(m |N,µ) =

(
N
m

)
µm(1− µ)N−m

with N a natural number, µ ∈ [0, 1], and m ∈ {0, . . . , N} has the following
properties.

(1) B(m |N, ·) viewed as a function of µ is non-decreasing for µ ∈ [0, mN ].
(2) B(· |N,µ) viewed as a function of m is non-increasing for m ∈
{dµ(N + 1)e − 1, . . . , N}, where d·e is the ceiling function.

Proof. We first prove (1). Applying logarithm to B(m |N,µ) and we have

lnB(m |N,µ) = ln

(
N
m

)
+m ln(µ) + (N −m) ln(1− µ).

Its derivative with respect to µ is given by

∂µ lnB(m |N,µ) = m
1

µ
+ (N −m)

(
− 1

1− µ

)
=
m− µN
µ(1− µ)

.

Hence ∂µ lnB(m |N,µ) ≥ 0 if µ ≤ m
N . This proves (1).

We now prove (2). First assume µ 6= 1. It suffices to show that for

m ≥ dµ(N + 1)e − 1, we have B(m+1 |N,µ)
B(m |N,µ) ≤ 1. By a simple calculation, we

have
B(m+ 1 |N,µ)

B(m |N,µ)
=

(N −m)µ

(m+ 1)(1− µ)
.

And (N−m)µ
(m+1)(1−µ) ≤ 1 is equivalent to m ≥ µ(N + 1)− 1, which is the same as

m ≥ dµ(N+1)e−1 since m is an integer. When µ = 1, then dµ(N+1)e−1 =
N and (2) is vacuously true. This proves (2). �
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