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 5 

Supplemental Text S2. Simulation results based on six species abundance models 6 

To investigate the performance of the proposed singleton count estimator given in Equation (5) 7 

and the diversity estimator in Equation (7) of the main text, we carried out simulations by 8 

generating data sets from various species abundance models. Here we report the results from six 9 

representative models. In each model, we fixed the number of species at S = 2000 to mimic the 10 

taxa richness of microbial communities.  11 

The functional forms or distributions for species’ relative abundances ),...,,( 21 Sppp  are 12 

given below, whereby c is a normalizing constant such that   S
i ip1 1. When species abundances 13 

were simulated from a distribution (Model 3 and Model 4), we first generated a set of 2000 14 

random variables, which we regarded as fixed parameters in the simulation. In each model, we 15 

also give the CV (which is the ratio of the standard deviation over the mean) of ),...,,( 21 Sppp . 16 

The CV value quantifies the degree of heterogeneity among the probabilities ),...,,( 21 Sppp . 17 

When all probabilities are equal, CV = 0. A larger value of CV indicates a higher degree of 18 

heterogeneity among probabilities. In the following description, S = 2000 for all models. 19 

Model 1. A homogeneous model with pi = 1/S and S = 2000. This is the model with no 20 

heterogeneity among species relative abundances (CV = 0).  21 

Model 2. A random uniform model with pi = cai, where ),...,,( 21 Sppp  is a random sample from a 22 

uniform (0, 1) distribution. (CV = 0.57).  23 
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Model 3. A broken-stick model with pi = cai, where (a1, a2,…, aS ) is a random sample from an 24 

exponential distribution. Equivalently, ),...,,( 21 Sppp  follows a Dirichlet distribution with 25 

parameter 1 (CV = 0.99). 26 

Model 4. A log-normal model with pi = cai, where (a1, a2,…, aS ) is a random sample from a 27 

log-normal distribution with mean µ = 0, and variance σ2 = 1 (CV= 1.96).  28 

Model 5. A Zipf-Mandelbrot model with )5/(  icpi , i = 1, 2,…, S (CV = 3.07).  29 

Model 6. A power-decay model with 9.0/ icpi  , i = 1, 2, …, S (CV= 5.03). 30 

 31 

For each given model, we considered a range of sample sizes (n = 2000 to 10000 in an 32 

increment of 1000). Then for each combination of abundance model and sample size, 1000 33 

simulated data sets were generated from the abundance model. Two types of data were generated: 34 

(i) True data without sequencing error (data with the true number of singletons): individuals were 35 

randomly selected from a given model; species abundances and frequency counts were then 36 

generated. 37 

(ii) Spurious data with a sequencing error rate of 10% (data with spurious singletons): individuals 38 

were randomly selected from a given model, but there was a probability 10% that each sampled 39 

individual was misclassified as a new species and thus became a spurious singleton. This was used 40 

to mimic the sequencing error with an error rate of 10% for each detected individual to be 41 

misclassified as a spurious singleton.  42 

For each model, we display four sub-plots in Supplementary Fig. S1: In Panel (a), we show 43 

the plots of the average values of three singleton counts as a function of sample size. The three 44 

singleton counts include those obtained from the true data, spurious data, and the estimation 45 

method based on Equation (5) of the main text. All values were averaged over 1000 simulation 46 
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trials under the six species abundance models. All six panels (a) were also shown in Fig. 1 of the 47 

main text. Some conclusions presented there are summarized below to make the contents of this 48 

Additional file self-contained. 49 

The number of singletons for the true data generally declines with sample size when sample 50 

size becomes very large, whereas the number of singletons for spurious data always increases with 51 

sample size. This is consistent with a similar finding by Dickie (2010). The drastically different 52 

pattern for the two singleton counts can be used to detect whether sequencing error exists or not 53 

when an empirical accumulation curve for the singleton count can be recorded in the 54 

data-collecting procedures. Fig. S1 reveals that our estimated singleton count matches very closely 55 

the true value for each model. This implies (i) when there are no sequencing errors (so that the 56 

dotted curves represent the singleton counts for data), our estimator differs only to a limited extent 57 

from the true data, yielding almost the same diversity inference; (ii) when there are sequencing 58 

errors (so that the dashed curves represent the singleton counts for data), our estimator can greatly 59 

reduce the raw singleton count and make proper correction. Therefore, the discrepancy between 60 

our proposed estimator of singleton count and the observed count can be used to infer whether 61 

sequencing errors were present in data processing. Moreover, this implies that whenever the 62 

singletons are uncertain or in doubt, it is worth applying our proposed estimator of singleton count.  63 

Under each model, Panels (b), (c) and (d) compare the true diversity (Equation 1 in the main 64 

text) and the estimated asymptote of diversity (Equation 7 in the main text) calculated respectively 65 

from spurious data and from the adjusted data with the observed singleton count being replaced by 66 

the estimated value computed from Equation (5) of the main text. In Panel (b), we show the plots 67 

of the true species richness and the average values (over 1000 simulation trails) of the Chao1 68 

estimator for the spurious data and for the adjusted data. It is clear that the Chao1 estimate for the 69 

spurious data severely overestimates the true species richness. The adjusted Chao1 estimator 70 
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reduces most of the positive bias and works reasonably well for all models, although negative bias 71 

exists and the magnitude of the bias increases with the CV value.  72 

In Panel (c), we show the plots of the true Shannon diversity and the average values (over 73 

1000 simulation trails) of the estimated asymptote of Shannon diversity for the spurious data and 74 

for the adjusted data. The estimated asymptote of Shannon estimator for spurious data moderately 75 

overestimates the true diversity for each model, but this estimated asymptote for the adjusted data 76 

exhibits very low bias and works well for all models.  77 

In Panel (d), we show the plots of the true Simpson diversity and the average values (over 78 

1000 simulation trails) of the estimated asymptote of Simpson diversity for the spurious data and 79 

for the Simpson diversity estimator for the adjusted data. The estimated asymptote of Simpson 80 

estimator slightly overestimates the true diversity for each model, but this estimated asymptote for 81 

the adjusted data is nearly unbiased for all models.  82 

In summary, our estimated asymptotes of diversities presented in Equation (7) of the main 83 

text based on the adjusted data greatly remove the positive biases due to spurious singletons. When 84 

there are sequencing errors, our procedure always leads to better results; when there are no 85 

sequencing errors, our results differ from those based on the true data only to a limited extent. 86 

Therefore, our proposed estimator of singleton count can be used to detect the quality of the 87 

observed singleton count. This also reveals that whenever singletons are uncertain or in doubt, it is 88 

worth applying our estimator of singleton count in diversity analysis and statistical inferences.   89 

90 
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Fig S1. Plots of simulation. Under each model, there are four panels.  95 

Panel (a): plots of the average values of the singleton counts obtained from the true data, spurious 96 

data, and the estimation method based on Equation (5) in the main text. All values represent the 97 

average values over 1000 simulation trials under six species abundance models.  98 

Panel (b): plots of the true species richness, and the average values (over 1000 simulation trails) of 99 

the Chao1 estimator for the spurious data, and the Chao1 estimator (denoted as “adjChao1” in 100 

the plot) for the adjusted data with the observed singleton count being replaced by the estimated 101 

value computed from Equation (5) of the main text.  102 

Panel (c): plots of the true Shannon diversity and the average values (over 1000 simulation trails) 103 

of the estimated asymptote of Shannon diversity for the spurious data, and the estimated 104 

asymptote of Shannon diversity estimator (denoted as “adjShannon” in the plot) for the adjusted 105 

data.  106 

Panel (d): plots of the true Simpson diversity and the average values (over 1000 simulation trails) 107 

of the estimated asymptote of Simpson diversity for the spurious data, and the estimated 108 

asymptote of Simpson diversity estimator (denoted as “adjSimpson” in the plot) for the adjusted 109 

data.  110 

Note the scale in the Y-axis may be different in the four panels due to different range of diversity.  111 
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