An unusual archosauriform tooth increases known tetrapod diversity in the lower portion of the Chinle Formation (Late Triassic) of southeastern Utah, USA Lopez, Andres; St. Aude, Isabella; Alderete, David; Alvarez, David; Aultman, Hannah; Busch, Dominique; Bustamante, Rogelio; Cirks, Leah; Lopez, Martin; Moncada, Adriana; Ortega, Elizabeth; Verdugo, Carlos; Gay, Robert J *. Mission Heights Preparatory High School, 1376 E. Cottonwood Ln., Casa Grande, Arizona 85122

*rob.gay@leonagroup.com 520-836-9383

Abstract:

An unusual tetrapod tooth was discovered in the <u>Upper Triassic Chinle Formation of</u> southeastern Utah. The tooth was originally <u>hypothesized to pertain to *Revueltosaurus*</u>, but further investigations have rejected that hypothesis. In this paper, we compare MNA V10668 to other known fossil <u>tooth crowns from the Chinle Formation and assign the tooth to the least</u> inclusive clade <u>currently available</u>, Archosauriformes, based on the presence of mesial and distal serrations, a distal keel, and a conical mesiodistal profile. Using data found in other publications and pictures of other teeth, we compare this specimen to other Triassic dental taxa. MNA V10668 shares some similarities with *Crosbysaurus*, *Tecovasaurus*, and several other named taxa, including a teardrop-shaped labiolingual profile, but possesses <u>a</u> unique <u>combination of</u> characteristics not found in other <u>archosauromorph</u> teeth thus observed. This increases the known diversity of <u>archosauromorphs</u> from the Chinle Formation and represents the first tooth of this morphotype to be found from Utah in the Late Triassic, Comment [1]: I am still a bit confused about lower Chinle, lower member of the Chinle and lower portion of the Chinle. Which is it? Be consistent.

Deleted: archosauromorph

Deleted:	Late
Deleted:	thought
Deleted:	belong

Deleted:	teeth
Deleted:	found in
Deleted:	identify
Deleted:	it may belongs to

-1	Deleted:	diapsid
	Deleted: an archosaur archosaurifo	We conclude that it is most likely omorph and probably an rm.
1	Deleted:	tetrapods
	Deleted:	completely unique to
	Deleted:	Period

2 The recovery of vertebrate life from the Permian-Triassic transition resulted in a diverse array of new body forms as life filled ecological voids (citations). This is especially noticeable in the archosaurgmorphs. Many archosauromorph, archosauriform, and archosaurian teptile-groups fadiated across the globe, filling numerous niches with novel body forms (Nesbitt et al., 2010) Deleted: Imc displats (Deleted: Imc displats (Deleted: Imc displats) 5 radiated across the globe, filling numerous niches with novel body forms (Nesbitt et al., 2010) Deleted: Imc displats (Deleted: Imc displats) 6 and dietary specializations (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The Peleted: Imc displats 7 ecological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern Beleted: Imc displats 8 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 Beleted: Late 9 million years. Deleted: Late Deleted: diversification 10 It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic Deleted: diversification 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and Beleted: a 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Peleted: a 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013			
array of new body forms as life filled ecological voids (citations). This is especially noticeable in Imaging 4 the archosauromorphs. Many archosauromorph, archosauriform, and archosaurian reptile-groups Deleted: -line dispide 5 radiated across the globe, filling numerous niches with novel body forms (Nesbitt et al., 2010) Deleted: -line dispide 6 and dietary specializations (Heckert, 2004; Parker et al., 2005, Barrett et al., 2011). The Ceological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern 8 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 million years. 10 It is perhaps somewhat surprising then that the terrestrial record of the Lipper Triassic Deleted: diversification 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and Deleted: a 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Deleted: a 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Deleted: is 15 Even with this recent work, Utah's Triassic terapod record is lower in diversity compared to Deleted: is 16 (Morales and Ash, 1993). This has especially peen the case when looking only at body fossils, Deleted: is 17	2	The recovery of vertebrate life from the Permian-Triassic transition resulted in a diverse	Deleted: n
4 the archosauramorphs. Many archosauromorph, archosauriform, and archosaurian reptile-groups Deleted: - dinc diapsids 5 radiated across the globe, filling numerous niches with novel body forms (Nesbitt et al., 2010) Deleted: - dinc diapsids 6 and dietary specializations (Heckert, 2004; Parker et al., 2005, Barrett et al., 2011). The ecological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern 8 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 9 9 million years. Deleted: tare 10 It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic Deleted: Late 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and New Mexico have received (e.g., Long and Mury, 1995; Heckert et al., 2005; Parker, 2005; Deleted: a 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs Image: Deleted: second published from Utah has mainly consisted of the ubiquitous phytosaurs 16 (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or	3	array of new body forms as life filled ecological voids (citations). This is especially noticeable in	Deleted: amazing
5 radiated across the globe, filling numerous niches with novel body forms (Nesbitt et al., 2010) Deleted: adapted and 6 and dietary specializations (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The Deleted: or creating 7 ecological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern Birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 million years. 10 It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic Deleted: diversification 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and Deleted: a 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Deleted: a 14 Parker et al., 2006). Uptil recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs 16 (Morales and Ash, 1993). [This has especially been the case when looking only at body fossils, Deleted: is 17 Even with this recent work, Utah's Triassic tetrapod record is lowgr in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or actosaurs Deleted: is 18 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late <	4	the archosauromorphs. Many archosauromorph, archosauriform, and archosaurian reptile-groups	Deleted: -line diapsids
33 particle actoss the globe, thing inductous inclus with novel foody forms (resolut et al., 2010) beleted: adapted and 6 and dietary specializations (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The recological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern 8 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 peleted: adapted and 9 million years. 10 It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic peleted: Late 11 Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Peleted: a 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the 15 Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs 16 (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, 17 Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or actosaurs 18 Peleted: in/// Deleted: is/// Deleted: only 19 (Martz et al., 2014). While paleontolo	5	radiated scross the global filling numerous nickes with nevel body forms (Nechitt et al. 2010)	Deleted: reptiles
6 and dietary specializations (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The 7 ecological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern 8 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 9 million years. 10 It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic 11 Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the 15 Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs 16 (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, 17 Even with this recent work, Utah's Triassic tetrapod record is lowgr in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs 19 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 20 Isoos (Cope, 1875) most of the collection effort has gone towards findi	5	adiated across the globe, minig numerous menes with novel body forms (resolit et al., 2010)	Deleted: adapted and
 cological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern birds), erocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 million years. It is perhaps somewhat surprising then that the terrestrial record of the <u>Upper Triassic</u> Period from Utah, <u>USA</u> has not reflected the global <u>disparity</u> of tetrapod clades. Some of this may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Peleted: a Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). [This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late I800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	6	and dietary specializations (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The	Deleted: or creating
 birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200 million years. It is perhaps somewhat surprising then that the terrestrial record of the <u>Upper Triassic</u> Period from Utah, <u>USA</u> has not reflected the global <u>disparity</u> of tetrapod clades. Some of this may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lowgr in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	7	ecological revolution of the Triassic Period laid the groundwork for dinosaurs (including modern	
 million years. It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). [This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). [While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	8	birds), crocodiles, and mammals to dominate terrestrial vertebrate assemblages for the next 200	
10 It is perhaps somewhat surprising then that the terrestrial record of the JJpper Triassic Deleted: Late 11 Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this Deleted: diversification 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and Deleted: diversification 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Deleted: a 14 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Deleted: a 15 Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs Comment [21: Procolophonid et al. 2005 Palaeontologia Elect 16 (Morales and Ash, 1993). [This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to Deleted: is 18 adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs Deleted: only 19 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late Comment [3]: Integrate this s in above. It is hanging out there. 21 rocks Comment [3]: Integrate this s in above. It is hanging out there.	9	million years.	
11 Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this Deleted: diversification 12 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and Deleted: diversification 13 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Deleted: a 14 Parker et al., 2006). Uptil recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Deleted: a 15 Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs Comment [21: Procolophonid et al. 2005 Palaeontologia Electric 16 (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or actosaurs Deleted: is 19 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late Deleted: only 18 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger Comment [3]: Integrate this s in above. It is hanging out there.	10	It is perhaps somewhat surprising then that the terrestrial record of the Upper Triassic	Deleted: Late
 may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	11	Period from Utah, USA has not reflected the global disparity of tetrapod clades. Some of this	Deleted: diversification
 New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005; Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	12	may be attributed to the greater attention that Late Triassic deposits in neighboring Arizona and	
 Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger comment [3]: Integrate this s in above. It is hanging out there. 	13	New Mexico have received (e.g., Long and Murry, 1995; Heckert et al., 2005; Parker, 2005;	Deleted: a
 Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs (Morales and Ash, 1993). This has especially been the case when looking only at body fossils. Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	14	Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; Martz et al., 2014) the	
 16 (Morales and Ash, 1993). This has especially been the case when looking only at body fossils, Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs 19 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger 21 rocks. 	15	Triassic vertebrate record published from Utah has mainly consisted of the ubiquitous phytosaurs	
 Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	16	(Morales and Ash, 1993). This has especially been the case when looking only at body fossils,	Comment [2]: Procolophonids, Fraser et al. 2005 Palaeontologia Electronica
 adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	17	Even with this recent work, Utah's Triassic tetrapod record is lower in diversity compared to	Deleted: is
 adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks. 	10		Deleted: true
 19 (Martz et al., 2014). While paleontologists were making collections in Utah since at least the late 20 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger 21 rocks. 	18	adjoining states, with the majority of specimens being identified as either phytosaurs or aetosaurs	Deleted: only
 1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger rocks Comment [3]: Integrate this s in above. It is hanging out there. 	19	(Martz et al., 2014). While paleontologists were making collections in Utah since at least the late	
21 rocks.	20	1800s (Cope, 1875) most of the collection effort has gone towards finding fossils in younger	
	21	rocks	Comment [3]: Integrate this statement in above. It is hanging out there.

34	In May of 2014 a paleontological expedition to Comb Ridge in southeastern Utah was
35	conducted by Mission Heights Preparatory High School (Figure 1). During the expedition a new,
36	very rich (>300 specimens collected representing 15 taxa in two field seasons) microsite they
37	dubbed "The Hills Have Teeth" (Museum of Northern Arizona Locality 1724), approximately
38	five meters south of a locality that was previously discovered (=XXXX), Both at "The Hills
39	Have Teeth" and area immediately adjacent to the west of the hill a dozen partial and complete
40	tetrapod teeth were collected. Most of these teeth belonged to phytosaurs (e.g. MNA V10658,
41	MNA V10659, etc.) and temnospondyls (e.g. MNA V10655, MNA V10656), Two teeth were
42	notably different from these two taxa that dominate the locality in number of specimens. One is
43	described elsewhere (Gay and St. Aude, 2015). The other is the subject of this contribution. That
44	specimen, MNA V10668, is compared here to many Triassic diapsids in order to assign it to a
45	taxon. We compare it to the non-archosauriform archosauromorphs Azendohsaurus
46	madagaskarensis (Flynn et al., 2010), Mesosuchus browni (Dilkes, 1998), and Teraterpeton
47	hrynewichorum (Sues, 2003), several non-archosaurian archosauriforms including Crosbysaurus
48	harrisae (Heckert, 2004), Crosbysaurus sp. (Gay and St. Aude, 2015), Krzyzanowskisaurus hunti
49	(Heckert, 2005), Lucianosaurus wildi (Hunt and Lucas, 1995), Protecovasaurus lucasi (Heckert,
50	2004), Revueltosaurus callenderi (Hunt, 1989), Tecovasaurus murryi (Hunt and Lucas, 1994),
51	unnamed archosauriform teeth (Heckert, 2004), and several archosaurs (Colbert, 1989; Dalla
52	Veccia, 2009; Heckert, 2004).
53	Materials and Methods:
54	Standard paleontological field materials and methods were used to collect all specimens

- 55 from MNA locality 1725, including brushes, dental tools, and other small hand tools. Specimens
- 56 were wrapped in toilet paper and placed in plastic zip-seal bags for transport back to Arizona.

Deleted: to Comb Ridge in southeastern Utah Deleted: two of the authors (AM and IS) discovered

Deleted:	near
Deleted:	by the senior author (RG)
Deleted:	the alluvial fan
Deleted: Deleted:	by the senior author (RG) the alluvial fan

Formatted: Font:Not Bold

Deleted: amphibians
Formatted: Font:Not Bold
Deleted: the
Deleted: dominant
Deleted: , discovered by IS,
Deleted: was
Deleted: collected
Deleted: by one of the authors (AM) and defied classification at the time of discovery
Deleted: Since then we have had the opportunity to compare this new specimen to other identified teeth from across the Chinle and Dockum Formations.
Deleted: speciemen
Deleted: to help classify it
Formatted: Font:(Default) Times New Roman, 12 pt
Deleted: r
Deleted: a
Deleted: a
Delated, unidentified or

Deleted: as described in Gay and St. Aude (2015 Deleted:)

85	Locality data for MNA V10668 was recorded using Backcountry Navigator Pro running on an	
86	Android OS smartphone. Measurements of MNA V10668 were obtained using a set of	Deleted
87	Craftsman metal calipers (model 40257) with 0.05mm precision. Figures were created using	collection surface ex
88	GIMP 2.8.4. Photos were taken with an Olympus E-500 DSLR and PC USB digital microscope.	Deleted
89	MNA V10668 was collected under Bureau of Land Management permit UT14-001S and is	
90	permanently housed at the Museum of Northern Arizona (MNA) along with the exact locality	
91	information. Quantitative and qualitative comparisons of MNA V10668 to published	
92	photographs, drawings, and descriptions, along with direct comparison to material from the	
93	Chinle Formation are housed at the MNA were used to assign MNA V10668 to its least-	
94	inclusive clade.	
95	Geologic Setting:	
96	MNA V10668 was found at MNA Locality 1725 on the surface of lower member of the	Comment
97	Chinle Formation at Comb Ridge, Utah (Figure 1), roughly 6 meters from the base of the <u>unit</u>	you cann one has
98	along with teeth of phytosaurs, temnospondyls, and Crosbysaurus (MNA V10666), The fossil	Deleted
00	metarial found at legality 1725 originated at MNA Legality 1724 and was washed down slope	Deleted
99	inaternar jound at locarity 1723 originated at MINA Locarity 1724 and was washed down stope.	Deleted
100	The horizon is a <u>fossiliferous</u> light grey mudstone with interspersed carbonaceous clasts (Figure	Deleted
101	2). This mudstone is 13 cm below a red brown mudstone-grading-to-shale, 8.75 meters above the	Deleted
100		Deleted
102	base of the Chinie Formation (Gay and St. Aude, 2015; figure 4). The fossil-bearing layer,	Deleted
103	informally referred to as, "the Hills Have Teeth bed," is exposed locally for about half a	Deleted
104	kilometer in the Rainbow Garden (MNA Locality 1721) area. Preliminary stratigraphic work	TeethMN.
		Deleted
105	done in the summer of 2015 shows that this bed is discontinuous. It is present where the base of	Deleted
106	the Chinle Formation is exposed along the western face of Comb Ridge between the Rainbow	Deleted
107	Garden area and the San Juan River. At the northern end of Comb Ridge the lower member of	

Deleted: It was collected in a zip-seal collection bag after being removed from the surface exposure by a hand.

Deleted: captured

 Comment [4]: Sensu who? Has

 Someone referred to lower member? If not,

 you cannot use it. Change throughout if no

 one has used lower member before.

 Deleted: L

 Deleted: Member

 Deleted: Lower Member

 Deleted: . (Gay & St. Aude 2015) at MNA

 Locality 1725

 Deleted: from

 Deleted: slope from The Hills Have Teeth

 Ducrop, MNA locality 1724

 Deleted: In May of 2015 the precise fossil

 Derigted: and numerous teeth

 Deleted: the

 Deleted: and appears be

130	the Chinle Formation is dominated by multiple thick (>10 m) channel sandstones and	Comment [5]: How many? Be specific.
131	conglomerates. At this time it is unknown if these channel deposits are laterally equivalent to the	
101		
132	Hills Have Teeth fossil-bearing bed of whether they are incised into the lower member from	
133	younger portions of the Chinle Formation.	Comment [6]: unclear
134	Although the stratigraphy of the Chinle Formation has generally been well studied, no	
135	detailed work has been published on the exposures at Comb Ridge. Superficial work conducted	
136	by Bennett (1955), Lucas et al. (1997), and Molina-Garza et al. (2003) suggested various	Deleted: have
137	correlations for the uppermost reddish member (of what?). Most recently, Martz et al. (2014)	
138	have suggested that the uppermost portion of the Chinle Formation at Comb Ridge correlates to	
139	the Church Rock Member, as in Lisbon Valley to the northeast. We have elsewhere agreed with	Deleted: seen
140	this correlation (Gay and St. Aude, 2015).	
141	The lower member is more difficult to correlate with other members of the Chinle	
142	Formation exposed in southwestern Utah. The studies mentioned above looked primarily at the	
143	upper member of the Chinle Formation. The otherwise very extensive, Stewart et al. (1972)	
144	monograph on Chinle sedimentology and stratigraphy did not discuss Comb Ridge in any depth,	
145	though they do suggest that it correlates with the Monitor Butte Member but only included one	
146	sampling locality ("Comb Wash") without specifying precisely where the formation was	
147	observed along Comb Wash. In addition, the cross sectional path provided (Stewart et al., 1972;	
148	figure 10) does not approach Comb Ridge or Comb Wash so we cannot assess with confidence	
149	their sampling. In the same publication Stewart et al. (1972) state that the Monitor Butte Member	
150	cannot be definitively separated from the overlying Petrified Forest Member (=Church Rock	
151	Member of Martz et al. 2014). We disagree with this statement as we find the lower member to	
152	be distinct throughout the exposure of Comb Ridge compared to the Church Rock Member.	

155	Stewart et al. (1972) also state that the Moss Back Member is found in southeastern Utah	
156	interbedded with the Monitor Butte Member, a condition we do not see at Comb Ridge. The	
157	Monitor Butte tends to express on the surface as a more greenish-grey (Stewart et al., 1972) than	
158	the blue-grey seen at Comb Ridge but the abundant bentonite in the member supplies the	
159	characteristic "popcorn" weathering seen at Comb Ridge and described by Stewart et al. (1972)	
160	for the Monitor Butte.	
161	Lithologically the lower member is dominated by grey to light grey bentonitic muds and	Comment [7]: All of this new description should have a stratigraphic
162	shales with rare localized conglomerates and coarse-grained sandstones. These conglomerates	section with it now.
163	tend to be calcium-cemented and are dominated by sandstone clasts, though chert clasts can	
164	occur. These resistant beds tend to be clastically homogeneous and are rarely over two meters in	Deleted: 2
165	thickness. At The Hills Have Teeth beds carbonized plant remains are common but have not	Comment [8]: use quotes or do not, be consistant
166	been noted at other localities within the lower member where trenching has been conducted and	
167	stratigraphic sections measured whereas both the Kane Springs Member to the northeast and	
168	Monitor Butte Member to the south and west preserve abundant carbonized plant fragments and	
169	occasional well-preserved plant material (Stewart et al., 1972; Martz et al., 2014).	
170	Biostratigraphy is difficult. The unionid bivalves found in the lower member at Comb	Comment [9]: Overall or at this locality?
171	Ridge do not allow tight age constraints and no diagnostic vertebrate remains have yet been	
172	found outside of Crosbysaurus (Gay and St. Aude, 2015). This places the lower member being	
173	deposited during the latest Carnian or earliest Norian stages of the Triassic Period (Heckert and	
174	Lucas, 2006). Whereas the Kane Springs Member of the Chinle Formation in Lisbon Valley has	Deleted: While
175	occasional body fossils (Martz et al., 2014), virtually no fossil material outside of the Rainbow	
176	Garden/Hills Have Teeth area have been recovered from the lower portion of the Chinle. This is	

180	despite extensive prospecting in May and December of 2014, and March, May, and June of			
181	2015.			
182	Fieldwork is ongoing to determine the precise stratigraphic correlation of the lower			
183	member but at this time we can at least say that MNA V10668, coming from MNA Locality			
184	1724, is from the oldest portion of the Chinle Formation (Gay and St. Aude, 2015) and predates			
185	the deposition of the Church Rock Member at Comb Ridge.			
186	Description:			
187	MNA V10668 is a single tooth crown that is labiolingually flattened and concial in	De	eleted: labiolingually	
188	profile. It measures 5 mm apicobasally and 3_mm mesiodistally. The distal side of the tooth			
189	crown has a continuous serrated edge from the base to the apex. We interpret this to be the distal	Co	omment [10]: Based on?	
190	edge as it presents a more vertical profile when viewed in labial or lingual view. The distal	De	eleted: These	
191	serrations are 0.1 mm apicobasally, with a density of eight serrations per millimeter. We estimate	De	eleted: in length	
192	there are thirty serrations along the entirety of the distal keel. The serrations show increasing	De	eleted: . There are eleted: with an	
193	wear apically with the apex itself completely worn away prior to fossilization. We interpret this	De	eleted: estimated	
194	structure as a wear facet (Figures 3, 4). The distal serrations are stacked apicobasally and are not	De	eleted: These	
195	labiolingually staggered as they progress to the apex of the specimen. The mesial side of the	De	eleted: do	
196	crown is missing most of its enamel so identification of features is difficult. Nonetheless, the	De	eleted:	
197	dentine does preserve traces of several apical serrations. It is possible that a pronounced mesial	De	eleted:	
198	keel existed in this region but there is no evidence of this in the preserved dentine (though this	De	eleted: a pronounced keel mesially	
199	does not rule out the possibility of an enameled keel). The wear on the apex is well rounded with	Co	omment [11]: Are there teeth with	
200	no jagged edges. Coupled with the fact that no root is preserved and a small resorbtion pit is	se m vc	errations on the mesial side that lack a esial keel? This is an important part of pur argument.	
201	present on the base we suggest that MNA V10668 is a shed tooth crown. The loss of enamel	De	eleted: There is	$\overline{\langle}$
202	from the majority of the tooth surface does not appear recent as all the enamel edges are smooth	De	eleted: ,	\Box
202	and the majority of the tool surface does not upped recent, as an the endner edges are smooth.	De	eleted: this	

220	It is possible that this tooth was digested. Although there is no pitting observed on the preserved	
221	enamel surface the dentine shows occasional pitting. We have interpreted these pits as transport	
222	damage but the presence of both coprolites and a digested theropod or rauisuchian tooth	
223	(uncatalogued MNA specimen) collected in the 2015 field season do not allow us to rule out this	
224	second option. The tooth has a small chip on its base, likely a result of recent weathering and	
225	transport due to the freshness of the break, distal to the midline (Figure 3, 4).	
226		
227	Systematic Paleontology:	Formatted: Indent: First line: 0"
228	Diapsida Osborn, 1903	
229	Archosauromorpha Von Huene, 1946	
230	?Archosauriformes Gauthier, 1986	
231		
232	Diagnosis:	
233	Teeth from various Triassic animals are common in microvertebrate assemblages and	
234	many are difficult to diagnose (Heckert, 2004). This can be due to both plesiomorphic tooth	
235	structure across clades as well as variation within tooth rows in a single individual. None the	
236	less, we can diagnose MNA V10668 as being an archosauriform based on the following	
237	characters from Godefroit and Cuny (1997): tooth conical in mesiodistal profile with a single	
238	cusp and possesses serrations on both the mesial and distal edges. The tooth (at least on the distal	
239	edge) possesses an enamel keel (where?) and is labiolingually compressed. Since MNA V10668	
240	is a shed tooth crown we cannot assess the character of deep thecodont implantation, though	
241	Godefroit and Cuny (1997) regard this as a dubious character in any case.	Comment [12]: Much better
242		

243	<u>Comparisons:</u>	Deleted: Differential Diagnosis
244	MNA V10668 differs from most described Triassic teeth with serrations only along one	Deleted: on
245	<u>edge</u> . Because this morphology may be due to taphonomic processes discussed above, we	Deleted: side
246	compare MNA V10668 to other diapsids with the codont or sub-the codont dentition with both	
247	mesial and distal serrations as well as those only possessing distal serrations.	
248	Azendohsaurus madagaskarensis is an archosauromorph from Madagascar known from	Formatted: Font:(Default) Times New Roman, 12 pt
249	reasonably complete remains (Flynn et al., 2010). Its dentition is well documented and	Deleted: reptile
250	illustrated, allowing comparisons to be made (Flynn et al., 2010). Azendohsaurus teeth are	Deleted: easily
251	slightly recurved with a basal constriction whereas MNA V10668 appears to be conical with no	Deleted: while
252	mesiodistal constriction apical to the base. The teeth of Azendohsaurus do not possess significant	
253	wear facets or worn denticles, as MNA V10668 does. The denticles that exist on the teeth of	
254	Azendohsaurus are apically directed. In MNA V10668 the preserved distal denticles appear	
255	perpendicular to the long axis of the tooth. The denticles of Azendohsaurus are also much larger	
256	(>0.5 mm) and fewer in number than those of MNA V10668, having between four to 18 on the	
257	carinae, depending on tooth position. MNA V10668 cannot be assigned to Azendohsaurus. Flynn	Deleted: clearly does not represent a specimen of
258	et al. (2010) also report that the teeth of Azendohsaurus do not possess wear facets, a feature that	
259	is seen in MNA V10668.	Comment [13]: Be careful, a behavioral characteristic that could vary in different
260	Mesosuchus browni is a basal rhynchosaur, deeply nested within Archosauromorpha,	Deleted: a
261	(Dilkes, 1998), and is known from at least four specimens. The dentition of Mesosuchus is	Deleted: multiple specimens
262	rounded in cross-section and conical in profile. The tooth-jaw junction is not well preserved	
263	enough to say whether the teeth had thecodont implantation. Dilkes (1998) noted an unusual	
264	wear facet on the teeth of Mesosuchus, which is why it is included here. Despite MNA V10668	
265	and Mesosuchus both having erosional surfaces, those on Mesosuchus are mesiolabially directed	

276	whereas in MNA V10668 the wear is mesiobasal. Mesosuchus dentition also lacks serrations or		Deleted: while
277	denticles. Indeed the mesial and distal faces, as illustrated and described by Dilkes (1998) show		
278	teeth round to square in cross section and conical in labial or lingual view. Taken all together the	_	Deleted : Coupled with the differences in cross-sectional profile
279	teeth of Mesosuchus are not a good match for MNA V10668 and as such does not represent a		Deleted: ,
280	specimen of Mesosuchus or any rhynchosaur by extension.		
281	The unusual archosauromorph Teraterpeton hrynewichorum from the Triassic of Nova		Deleted: r
282	Scotia was first described by Sues (2003). The teeth are round to oval in cross-section, with the	_	Deleted: The teeth of <i>Terraterpeton</i> are as odd as the rest of its skull.
283	posterior-most teeth being much broader labiolingually than mesiodistally. The teeth have a		
284	distal triangular cusp and a flattened area mesially on each occlusal surface. The narrow, conical		
285	profile and labiolingually compressed cross-section of MNA V10668 strongly differs from the		
286	teeth of Teraterpeton in all these aspects.		Deleted: r
287	Crosbysaurus harrisae (Heckert, 2004) is an archosauriform that has serrations on both		Deleted: , excluding it as the animal that possessed MNA V10668 during the Triassic
288	mesial and distal sides of the tooth, with the distal serrations being much larger than those on the		
289	mesial keel. These denticles are subdivided and on the distal keel they point apically, Both MNA		Deleted: Crosbysaurus harrisae and MNA V10668 have a similar shape and size.
290	V10668 and Crosbysaurus teeth are similar in size apicobasally and have the same triangular		
291	shape in labial and lingual views. Crosbysaurus teeth are distally curved at the apicomesial keel,	_	Deleted: on
292	a condition not present in MNA V10668.	_	Deleted: seen
293	MNA V10668 and MNA V10666, referred to Crosbysaurus sp. by Gay and St. Aude		
294	(2015), were both found at the same locality, MNA V10666 lacks serrations on the mesiobasal		Deleted: . Because of the close association between these two specimens we paid special
295	keel, as MNA V10668 appears to as well. The tooth referred to as Crosbysaurus sp. by Gay and		attention to MNA V10666 when considering the affinities of this new specimen.
296	St. Aude (2015) has clear mesial denticles towards the apex. The distal denticles are much larger	\swarrow	Deleted: does
			Deleted: That is where the similarities end.
297	and subdivided, as in all other <i>Crosbysaurus</i> teeth (Heckert, 2004). Whereas MNA V10668 is		Deleted: While
298	labiolingually compressed like MNA V10666 and other known Crosbysaurus teeth, it is not as	ally compressed like MNA V10666 and other known <i>Crosbysaurus</i> teeth, it is not as Formatted: Font.ltalic Formatted: Font.ltalic	Formatted: Font:Italic
	autoninguary compressed like writer v rooto and other known crossystarius teen, it is not as		Formatted: Font:Italic

322	side, apically directed, and the teeth tend to be mesiodistally narrower it is doubtful that MNA	
323	V10668 is a Crosbysaurus tooth.	
324	Krzyzanowskisaurus hunti (Heckert 2005) is a (presumably) small herbivorous	
325	pseudosuchian known only from dental remains. It resembles Revueltosaurus but can be	Deleted: u
326	diagnosed by the presence of a cingulum on the base of the tooth. Since MNA V10668 does not	Deleted: superficially
327	have a cingulum it cannot be a <u>referred to Krzyzanowskisaurus</u> .	Deleted: is obvious that it
328	Lucianosaurus wildi (Hunt and Lucas, 1995) is similar to other isolated Triassic teeth	Deleted: specimen of
329	described in the literature by having enlarged denticles and a squat shape with convex mesial and	
330	distal edges, being mesiodistally broad while apicobasally short. MNA V10668 is taller than it is	
331	long and has relatively small denticles. MNA V10668 does not represent Lucianosaurus.	
332	Protecovasaurus lucasi (Heckert, 2004) is diagnosed by having a recurved mesial surface	
333	where the apex is even with or overhangs the distal margin. The denticles on both the mesial and	
334	distal keels are apically directed. In all these features the teeth of Protecovasaurus do not match	
335	the features seen in MNA V10668.	
336	Revueltosaurus callenderi (Hunt, 1989; Heckert, 2002; Parker et al., 2005) has serrations	
337	on both the mesial and labial sides. Its serrations are proportionally larger and closer together.	
338	The teeth of Revueltosaurus are broader mesiodistally compared to their apicobasal height. In	
339	general, <i>Revueltosaurus</i> teeth have more serrations on the distal keel of the tooth than at the	Deleted:
340	mesial side of the tooth. MNA V10668 is labiolingually narrower than the teeth of	Deleted: Furthermore, <i>Revueltosaurus</i> has been distinguished by more than it's teeth
341	Revueltosaurus. These differences rule out the possibility that MNA V10668 is Revueltosaurus.	(Parker et al., 2005).
342	Heckert (2004) described some tetrapod teeth found from other localities across the	
343	Chinle Formation. Some of these teeth are from phytosaurs (Heckert, 2004, figure 43). NMMNH	

mesiodistally narrow. Considering that Crosbysaurus serrations are larger, present on the mesial

321

352	P-30806 for example is roughly conical in outline and somewhat labiolingually compressed. The	
353	serrations are perpendicular to the long axis of the tooth. In these regards, young phytosaur teeth	Deleted: orientied
354	are similar to MNA V10668. Unlike MNA V10668, however, these teeth are moderately curved	
355	lingually and have serrations on their mesial surface. In addition the serrations on phytosaur	
356	teeth, like those figured in Heckert (2004), are denser (>14 per millimeter) compared to MNA	Deleted: the ones
357	V10668. Phytosaur teeth in general, especially the teeth from segments of the jaw posterior to	Deleted: more dense
358	the premaxillary rosette, tend to be more robust than MNA V10668. Although phytosaurs are the	
359	most common taxa represented at <u>MNA V1724</u> it not likely MNA V106668 is a phytosaur tooth.	Deleted: The Hills Have Teeth
360	Heckert described another specimen, NMMNH P-34013 (Heckert, 2004, figure 20 <u>A-C</u>),	
361	that is roughly the same size as MNA V10668. Both have a resorption pit at the base and,	
362	unusual for predatory Triassic archosauriforms, a wear facet on the tip. This is a feature shared	Comment [14]: Not that unusual, could
363	with MNA V10668. However the serrations on NMMNH P-34013 are smaller (<0.1 mm) than	Deleted: c
364	MNA V10668, and has a slight curve unlike MNA V10668. Heckert described this tooth as	
365	belonging to an indeterminate archosauriform. Despite their differences, this tooth, NMMNH P-	Deleted: es
366	34013, is the closest in morphology to the tooth MNA V10668 yet identified.	Deleted: to
367	Based on the examination of an <u>uncatalogued</u> skull cast of <u>the theropod dinosaur</u>	
368	<i>Coelophysis bauri</i> (Cleveland Museum 31374) at Mission Heights Preparatory High School and	Formatted: Font color: Auto
369	from the literature (Colbert, 1989), it can be seen that teeth from the mid-posterior region of the	Formatted: Font color: Auto
370	maxilla of <i>Coelophysis</i> and MNA V10668 have similar morphology in labial view and	Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto
0.0		Deleted: Coelophysis
371	apicobasal length., Both teeth are 5mm tall from the apex to the base. They differ by	Deleted: a
		Deleted: tooth shape
372	Coelophysis teeth being naturally recurved, at least slightly, whereas MNA V10668 does not	Deleted: size
373	have a noticeable curve to it. <i>Coelophysis</i> teeth have small serrations along the mesial and distal	Deleted: This is especially true for teeth from the mid-posterior region of the maxilla of <i>Coelophysis</i>
374	sides. Coelophysis teeth tend to be even more mesiodistally compressed and the serrations at the	Deleted: When they are looked at closely many things stand out as to why they are different.

393	distal side are completely different. Coelophysis tooth serrations are smaller and are closer	
394	together to each other. We can conclude that MNA V10668 cannot be a Coelophysis tooth and	Deleted:
395	indeed is unlikely to be a theropod dinosaur at all. Although the enamel of MNA V10668 is not	
396	well preserved, it does not preserve any surface features such as longitudinal grooves, ridges,	
397	fluting, or undulations that are characteristic of theropod dinosaur teeth (Hendrickx et al., 2015).	
398	In addition, whereas MNA V10668 is moderately laterally compressed, Triassic theropod	Deleted: while
399	dinosaur teeth are compressed even more so (Colbert, 1989).	
400	Pterosaurs are rare from the Triassic of North America and several good examples are	Deleted: While
401	known from Europe. Perhaps the best illustrated in terms of dentition is <i>Austriadactylus</i> (Dalla	Deleted: p
		Deleted: teeth
402	Veccia, 2009). MNA V10668 differs from Austriadactylus in shape and size. Austriadactylus	Deleted: and
403	teeth are smaller and sharper; also they have serrations at the mesial and labial sides of the tooth.	Deleted: are completely different
404	The serrations are completely different because they are larger and possess more distinct tips.	
405	Austriadactylus has a few different types of teeth. Most teeth are small, have three cusps, and a	
406	slight curve to them. Other teeth have only one distinct cusp and have a slight curve to them.	
407	They have very few and large serrations. MNA V10668 differs from all of the Austriadactylus	
408	teeth as it has no visible curve, and serrations along the mesial side. Seeing this, MNA V10668	
409	does not represent Austriadactylus.	
410	Purported Chinle early sauropodomorph teeth, such as those figured in Heckert (2004,	Deleted: Reported
444	former 45, 92, 94) are automaly maripletarely commerciand. They also arbitist comptions on the	Deleted: Proported
411	ngures 45, 85, 84) are extremely mesionaterany compressed. They also exhibit sertations on the	Deleted: prosauropod
412	mesial and labial sides of the tooth. Its serrations are relatively larger, closer together, and are	
413	apically directed. Also early sauropodomorph teeth have a distinctly tapered apex with no wear	Deleted: prosauropod
		Deleted: "pointy"
414	facets. Its shape is completely different; MNA V10668 is relatively wider labiolingually and	Deleted: because this
115	aniachaselly smaller than the reported early source adometric speciments. There is no research to	Deleted: pressurened
415	aprovasany smaner man me reported <u>earry sauropodomorph</u> specimens. [There is no <u>reason to</u>	Deleted: possibility that the
		First Street

432	classify this specimen is an early sauropodomorph. It should also be noted that the extreme	Deleted: prosauropod
433	convergence seen in Azendohsaurus (Flynn et al., 2010) makes the identification of early	Deleted: h
		Deleted: u
434	sauropodomorphs, from the Chinle Formation tentative at best_(Nesbitt et al., 2007).	Comment [15]: This is not really the place for this.
435	The most common vertebrate remains from the Chinle Formation are phytosaur teeth	Deleted: prosauropods
436	(Heckert, 2004; Martz et al., 2014; pers. obs.). Despite the small size of MNA V10668 it is	
437	possible that this specimen pertains to a small phytosaur. To test this hypothesis two phytosaur	Deleted: juvenile
438	spouts identified as inveniles in the collections at the Museum of Northern Arizona were	Deleted: juvenile
-00		this ID?
439	examined. One of these, PEFO 13890/MNA V1789 was collected by George Billingsley in 1979	Deleted: were examined at the
440	from the Upper Petrified Forest Member of the Chinle Formation in Petrified Forest National	
441	Park (PEFO). It represents articulated paired premaxillae with 15 preserved alveoli on the right	
442	and 14 on the left, all of which save one are empty. The total preserved length of this specimen is	
443	9.3 cm. While identified in collections as <i>"Machaeroprosopus" zunii</i> there are no preserved	Deleted: Pseudopalatus
444	autapomorphies to support this assignment.	Comment [17]: So how do you know it is a phytosaur? You can show that here
445	The second specimen, MNA V3601, is a partial right dentary from the Blue Mesa	
446	Member of the Chinle Formation (Ramezani et al., 2014) <i>Placerias</i> Quarry, near St. Johns,	Formatted: Font:Italic
447	Arizona identified as Leptosuchus sp. (Long and Murry, 1995). MNA V3601 is 4.95 cm in	Deleted: a
448	length, preserving the anterior tip and eight alveoli. In this specimen several of the tooth crowns	
449	are present and show wear whereas others are broken off at the oral margin or inside the	Deleted: while
		Deleted: gum line
450	alveolus.	Deleted: alvelolus
451	In PEFO 13890/MNA V1789 the tooth row exhibits homodonty in the alveolar cross	Deleted: both
452	sections (Figure 5). We infer that while crown height may have varied the crowns themselves	Deleted: specimens the juvenile phytosaurs exhibit remarkable
453	would have had relatively uniform labiolingual profiles. This is supported by the single	Comment [18]: This is a poor argument. Strengthen with citations, comparisonsor get rid of it.

469	unerupted tooth crown present in an alveolus in the right premaxilla. This tooth is lingually
470	curved and symmetrical in mesiodistal profile. The tooth lacks any visible serrations (Figure 6).
471	In MNA V3601 the erupted crown heights vary but their labiolingual and mesiodistal
472	profiles are remarkably similar (Figure 5), This is notable considering the heterodonty present in
473	Jarger phytosaurs (Heckert, 2004) though we do acknowledge that not having complete juvenile
474	(or smaller) skulls available limits the inferences we can make about overall tooth form. Whereas
475	MNA V10668 is roughly the right size of tooth to have come from a small phytosaur similar in
476	ontogenetic age to PEFO13890/MNA V1789 or MNA V3601, the base of the tooth is unlike any
477	of the preserved juvenile phytosaur teeth or alveoli. Both undisputed phytosaur specimens have
478	round alveoli with serrated or unserrated conical teeth preserved (Figure 7, 8). In addition, all
479	preserved teeth in MNA V3601 do not show any lingual curvature as seen in MNA V10668.
480	While Jarger phytosaurs, presumed to be ontogenetically more mature, have triangular, lingually
481	curved teeth in their dentition, especially as one moves posteriorly (Long and Murry, 1995;
482	Hungerbühler, 2000; Heckert, 2004), these seem to be absent in juveniles from the preserved
483	portions specimens observed at the MNA, though additional juvenile phytosaur jaws would help
484	refine our comparison. The lingually curved teeth of adult phytosaurs are also much more robust,
485	with labiolingually wide basal and mid-crown section, unlike the laterally compressed and
486	teardrop-shaped base of MNA V10668. It may be that phytosaur dentition changed during
487	ontogeny to adapt to a changing diet, similar to what has been proposed to Tyrannosaurus
488	(Horner et al., 2011; Bates and Falkingham, 2012) and is seen today in Alligator (Subalusky et
489	al., 2009 and references therein). Even considering this we do not think that MNA V10668 can
490	be assigned to the <u>Phytosauria because of</u> the marked differences between it and all other known
491	phytosaur teeth.

Deleted: ,
Deleted: especially
Deleted: seen
Deleted: more
Deleted: mature
Comment [19]:yes, so you cannot make this argument.
Deleted: While
Deleted: juvenile
Comment [20]: You have no support to say this
Comment [21]: Which?
Deleted: basal
Deleted: structure
Comment [22]: Almost the entire crown is missing in the two posterior teeth, so what are you comparing your tooth to?
Comment [23]: Delete, you cannot compare tooth structure to a hole.
Comment [24]: Need to show this explicitly
Deleted: juvenile
Deleted: 5
Comment [25]: Why?
Deleted: adult
Deleted: posteriorally
Deleted: a
Deleted: we have on hand
Comment [26]: Juvenile versus mature phytosaurs – This argument is poorly supported and I do not see how you can make this argument with our current understanding of growth in Triassic organisms. What you have are small phytosaurs (that could be "adults") and larger phytosaurs (that could be "juveniles"). Be very careful with the language here. I would drop the ontogenetic argument and words like adult and invenile

Deleted: phytosauria

Deleted: due to

510	Conclusions:	
511	MNA V10668 cannot identified as any previously described Triassic taxon as it does not	
512	have any distinguishing autapomorphies and preserves a unique combination of characters.	Deleted: preserved
513	However, this tooth can be identified at least as Archosauriformes, MNA V10668 has many	Deleted: a
514	character states that match up with other archosauriforms, including labiolingual compression	Deleted: incertae sedis Deleted: characteristics
515	and the presence of serrations on distinct carinae. Another taxonomically indeterminate tooth,	Deleted: 0
516	NMMNH P-34013, is the closest tooth morphologically to MNA V10668 and likely belongs to	
517	the morphogroup Morphotype T of Heckert (2004), Despite their similarities it is obvious that	Deleted: .
518	MNA V10668 is morphologically distinct from NMMNH P-34013, primarily due to the smaller	
519	serrations and slight lingual curvature found in NMMNH P-34013. Although isolated teeth have	
520	been described before from Utah (Heckert et al., 2006; Gay and St. Aude, 2015) this is the first	
521	occurrence of tooth Morphotype T (sensu Heckert, 2004) described from Utah and the first to not	Deleted: m
522	be assigned to an existing genus of Triassic tetrapod. It is likely that other teeth now in	
523	collections may also represent unique morphotypes or previously described morphotypes not	
524	previously identified from Utah. As such it may represent an animal endemic to what is now	
525	Utah, though it may also represent a previous identified taxon for which little is known of its	
526	dentition, In addition, most of the tetrapod record from Utah's Chinle Formation has come from	Deleted:[]
527	the Church Rock Member (Martz et al., 2014; RG pers. obs.) This specimen, coming from the	
528	Lowest portion of the Chinle Formation, demonstrates increased diversity in an older part of the	Deleted: L
529	formation that has not been studied until recently (Gay and St. Aude, 2015).	Deleted: r Deleted: Member
530	Work is ongoing at Comb Ridge by crews from Mission Heights Preparatory High	
531	School. The tetrapod diversity of Chinle Formation at Comb Ridge will continue to increase as	

509

544	new discoveries	come to light. It is	s hoped that	additional taxa ca	n be added to the	e growing faunal
		0				0 0

545 <u>assemblage</u> with additional fieldwork in the near future.

546	Acknowledgements:
-----	-------------------

- 547 The authors would like to thank Jason Durivage, Gary Shepler, Steven Hall, and Deborah
- 548 Avey for their assistance with fieldwork while MNA V10668 was collected. We would also like
- to thank David and Janet Gillette for their assistance with collections and access to specimens.
- 550 Sterling Nesbitt, Matthew Wedel, and an anonymous reviewer provided comments that greatly
- 551 improved the manuscript. We would also like to thank ReBecca Hunt-Foster for her assistance
- 552 with our permit, UT14-001S. Nicole Helmke provided support and help to RG during the
- **553** revision of this manuscript but unfortunately passed away before she could see it finished. She is
- 554 <u>thanked and missed.</u>
- 555

556 **References**

- 557 **Barrett PM., Butler RJ., Nesbitt, SJ., 2011**, The roles of herbivory and omnivory in early
- 558 dinosaur evolution. *Earth and Environmental Science Transactions of the Royal Society of*
- 559 <u>Edinburgh</u>, <u>101</u>(3-4):383-396.
- 560 **Bates KT., Falkingham, PL., 2012, Estimating maximum bite performance in** *Tyrannosaurus*
- 561 <u>rex using multi-body dynamics</u>. *Biology Letters* 8:660-664.
- 562 **Bennett HS. 1955**. Photogeologic map of the Elk Ridge-15 [Hotel Rock] quadrangle, San Juan
- 563 County, Utah, Geologic Map, Salt Lake City: Utah Geological Survey,
- 564 Colbert EH. 1989. The Triassic dinosaur *Coelophysis*. Flagstaff, AZ: Museum of Northern
- 565 Arizona Press.
- 566 **Cope ED**, 1875, Report upon the collections of fishes made in portions of Nevada, Utah,
- 567 California, Colorado, New Mexico, and Arizona: during the years 1871, 1872, 1873, and 1874,

Deleted: list

Deleted: Works Cited Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font:Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font:Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto Formatted: Font color: Auto Formatted: Font:Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Default Paragraph Font, Font:(Default) Times New Roman, 12 pt, Not Italic, Font color: Auto, Pattern: Clear Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font:Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

- 570 Dalla Vecchia, FM. 2009, The first Italian specimen of Austriadactylus cristatus (Diapsida,
- 571 Pterosauria) from the Norian (Upper Triassic) of the Carnic Prealps. *Rivista Italiana di*
- 572 | *Paleontologia e Stratigrafia*, **115**(3):291-304.
- 573 Dilkes DW. 1998, The early Triassic rhynchosaur *Mesosuchus browni* and the interrelationships
- 574 of basal archosauromorph reptiles. Philosophical Transactions of the Royal Society B: Biological
- 575 Sciences 353:501–541.
- 576 Flynn JJ., Nesbitt SJ., Parrish JM., Ranivoharimanana L., Wyss AR, 2010, A new species
- 577 of Azendohsaurus (Diapsida: Archosauromorpha) from the Triassic Isalo Group of southwestern
- 578 Madagascar: cranium and mandible. Palaeontology 53:669–688.
- 579 **Gauthier JA. 1986**. Saurischian monophyly and the origin of birds. In: Padian K, ed. The origin
- 580 of birds and the evolution of flight, Memoirs of the California Academy of Sciences. San
- 581 <u>Francisco: California Academy of Sciences. vol. 8:1-55</u>
- 582 Gay RJ., Aude IS. 2015. The first occurrence of the enigmatic archosauriform Crosbysaurus
- 583 Heckert 2004 from the Chinle Formation of southern Utah. PeerJ **3**.
- 584 Gibson SZ. 2013, A new hump-backed ginglymodian fish (Neopterygii, Semionotiformes) from
- the Upper Triassic Chinle Formation of southeastern Utah. Journal of Vertebrate Paleontology
 33:1037–1050.
- 587 Godefroit P., Cuny G. 1997, Archosauriform Teeth from the Upper Triassic of Saint-Nicolas-d-
- 588 Port (northeastern France). Palaeovertebrata. 26 (1-4): 1-34
- 589 Heckert AB., Lucas SG, Hunt AP, 2005, Triassic vertebrate fossils in Arizona. New Mexico
- 590 <u>Museum of Natural History and Science Bulletin</u>, 29:16-44.
- 591 Hendrickx C., Mateus O., Araújo R. 2015. A proposed terminology of theropod teeth
- 592 (Dinosauria, Saurischia), Journal of Vertebrate Paleontology, 35:5, e982797

Formatted: Font:Bold, Font color: Auto

- Formatted: Font:Bold, Font color: Auto
- Formatted: Font color: Auto
- Formatted: Font:Bold, Font color: Auto
- Formatted: Font color: Auto
- Formatted: Font:Bold, Font color: Auto
- Formatted: Font color: Auto
- Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: HTML Cite, Font:(Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Default Paragraph Font, Font:(Default) Times New Roman, 12 pt, Not Italic, Font color: Auto, Pattern: Clear

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto Formatted: Font:Bold. Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

- Formatted: Font color: Auto Formatted: Font:Bold, Font color: Auto
- Formatted
 ... [2]

 Formatted
 ... [3]

 Formatted: Font:Bold, Font color: Auto

 Formatted
 ... [5]

 Formatted
 ... [5]

 Formatted
 ... [6]

 Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

593	Heckert AB. 2002, Heckert AB, Lucas SG, eds. A revision of the Upper Triassic ornithischian	Formatted: Font:Bold, Font color: Auto
594	dinosaur Revueltosaurus, with a description of a new species, Upper Triassic stratigraphy and	Formatted: Font color: Auto
595	paleontology. Albuquerque: New Mexico Museum of Natural History and Science. vol. 21:253-	
596	268	
597	Heckert AB. 2004, Late Triassic microvertebrates from the lower Chinle (Otischalkian-	Formatted: Font:Bold, Font color: Auto
598	Adamanian: Carnian), southwestern USA. Albuquerque: New Mexico Museum of Natural	Formatted: Font color: Auto
599	History and Science. Vol. 27.	
600	Heckert AB. 2005, Heckert AB, Lucas SG, eds. Krzyzanowskisaurus, a new name for a probable	Formatted: Font:Bold, Font color: Auto
601	ornithischian dinosaur from the Upper Triassic Chinle Group, Arizona and New Mexico, USA,	Formatted: Font color: Auto
602	Vertebrate paleontology in Arizona. Albuquerque: New Mexico Museum of Natural History and	
603	Science. vol. 29 :77-83	
604	Heckert AB, Lucas SG. 2006. Harris JD, Lucas SG, Spielmann JA, Lockley MG, Milner ARC,	Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto
605	Kirkland JI, eds. Micro- and small vertebrate biostratigraphy and biochronology of the Upper	Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt
606	Triassic Chinle Group, southwestern USA, The Triassic-Jurassic terrestrial	Not Italic, Font color: Auto, Pattern: Clear
607	transition. Albuquerque: New Mexico Museum of Natural History and Science. vol. 37:94-104	Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto
608	Heckert, AB., Lucas, SG., DeBlieux, DD., Kirkland, JI. Harris JD. Lucas SG. Spielmann JA.	Formatted: Font color: Auto
609	Lockley MG, Milner ARC, Kirkland JI, eds. A revueltosaur-like tooth from the Petrified Forest	
610	Formation (Upper Triassic: Revueltian) from Zion National Park, The Triassic-Jurassic	
611	Terrestrial Transition. Albuquerque: New Mexico Museum of Natural History and Science. vol.	Formatted: Font:Bold, Font color: Auto
	25 500 501	Formatted: Font color: Auto
612	37:588-591	Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto
613	Horner JR., Goodwin MB., Myhrvold N., 2011, Dinosaur Census Reveals	Formatted: Font color: Auto
614	Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek	Formatted: Font:Not Bold, Italic, Font color: Auto
		Formatted: Font color: Auto
615	Formation (Maastrichtian), Montana, USA., PLoS ONE, 6:e16574,	Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

- 616 Hungerbühler, A., 2000, Heterodonty in the European phytosaur Nicrosaurus kapffi and its
- 617 implications for the taxonomic utility and functional morphology of phytosaur
- 618 dentitions. Journal of Vertebrate Paleontology, 20(1):31-48.
- 619 **Hunt AP. 1989.** A new ?ornithischian dinosaur from the Bull Canyon Formation (Upper
- 620 Triassic) of east-central New Mexico. In: Lucas SG, Hunt AP, eds. Dawn of the age of dinosaurs
- 621 *in the American Southwest*. Albuquerque: New Mexico Museum of Nature and Science. 355-358
- 622 Hunt AP, Lucas SG. 1994. Ornithisichian dinosaurs from the Upper Triassic of the United
- 623 States. In: Sues H-D, Fraser NC, eds. *In the shadow of the dinosaurs: early Mesozoic tetrapods*.
- 624 Cambridge: Cambridge University Press. 227-241
- 625 **Lucas SG, Heckert AB, Estep JW, Anderson OJ. 1997**. Stratigraphy of the Upper Triassic
- 626 Chinle group, four corners region, *New Mexico Geological Society Guidebook*48:81-107,
- 627 Long RA., Murry PA. 1995, Late Triassic (Carnian and Norian) tetrapods from the
- 628 southwestern United States. Albuquerque: New Mexico Museum of Natural History and Science.
- 629 Martz JW, Irmis RG, Milner ARC. 2014, Lithostratigraphy and biostratigraphy of the Chinle
- Formation (Upper Triassic) in southern Lisbon Valley, southeastern Utah. UGA Publication
 43(2014):397-446.
- 632 Molina-Garza RS, Geissman JW, Lucas SG. 2003. Paleomagnetism and magnetostratigraphy
- 633 of the lower Glen Canyon and upper Chinle Groups, Jurassic-Triassic of northern Arizona and
- 634 northeast Utah, Journal of Geophysical Research: Solid Earth 108(B4):1-24
- 635 Morales, M., Ash, SR. 1993, The last phytosaurs. *The Nonmarine Triassic*. New Mexico
- 636 Museum of Natural History and Science. vol. 3:357-358
- 637 Nesbitt SJ., Irmis RB., Parker WG. 2007, A critical re-evaluation of the Late Triassic
- 638 Dinosaur taxa of North America. Journal of Systematic Paleontology 5: 209-243

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt. Bold, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: HTML Cite, Font:(Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto Formatted: Font color: Auto

Formatted: Font: (Default) Times New

Roman, 12 pt, Font color: Auto

Formatted: HTML Cite, Font:(Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

639	Nesbitt SJ., Sidor CA., Irmis RB., Angielczyk KD., Smith RMH., Tsuji LA. 2010.	
640	Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature	
641	464:95–98.	
642	Osborn HF. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and	
643	Diapsida, Science 17(424):275-276	
644	Parker WG, 2005. Faunal review of the Upper Triassic Chinle Formation of Arizona. Mesa	
645	Southwest Museum Bulletin, 11: 34-54.	
646	Parker WG., Ash SR., Irmis RB. 2006, A century of research at Petrified Forest National Park:	
647	geology and paleontology. Flagstaff: Museum of Northern Arizona.	
648	Ramezani J., Fastovsky DE., Bowring SA. 2014. Revised chronostratigraphy of the Lower	
649	Chinle Formation strata in Arizona and New Mexico (USA): high-precision U-Pb	
650	geochronological constraints on the Late Triassic evolution of dinosaurs. American Journal of	
651	Science 314 : 981-1008	
652	Stewart JH., Poole FG., Wilson RF., Cadigan RA., Thordarson W., Albee HF.	
653	1972. Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the	
654	Colorado Plateau region (No. 690). Geological Survey (US).	
655	Subalusky AL., Fitzgerald LA., Smith LL. 2009, Ontogenetic niche shifts in the American	
656	Alligator establish functional connectivity between aquatic systems. Biological Conservation	
657	142: 1507-1514	
658	Sues H-D. 2003, An unusual new archosauromorph reptile from the Upper Triassic Wolfville	
659	Formation of Nova Scotia. Canadian Journal of Earth Sciences 40: 635–649.	
660	Von Huene F. 1946. Die grossen Stamme der Tetrapoden in den geologischen	
661	Zeiten, Biologisches Zentralblatt 65(7/12):266-275	

Formatted: Font:Bold, Font color: Auto Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: HTML Cite, Font:(Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Deleted: Can. J. Earth Sci. Formatted: Font:Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font:(Default) Times New Roman, 12 pt, Font color: Auto

Formatted: HTML Cite, Font:(Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto