An unusual archosauromorph-archosauriform tooth increases known tetrapod diversity in the lower portion of the Chinle Formation (Late Triassic) of southeastern Utah, USA Lopez, Andres; St. Aude, Isabella; Alderete, David; Alvarez, David; Aultman, Hannah; Busch, Dominique; Bustamante, Rogelio; Cirks, Leah; Lopez, Martin; Moncada, Adriana; Ortega, Elizabeth; Verdugo, Carlos; Gay, Robert J *. Mission Heights Preparatory High School, 1376 E. Cottonwood Ln., Casa Grande, Arizona

85122

*rob.gay@leonagroup.com
520-836-9383

Abstract:

An unusual tetrapod tooth was discovered in the Late Upper Triassic Chinle Formation of southeastern Utah. The tooth was originally thought hypothesized to belong pertain to *Revueltosaurus*, but further investigations have rejected that hypothesis. In this paper, we compare MNA V10668 to other known fossil teeth-tooth crowns found infrom the Chinle Formation and identify assign the tooth to the least inclusive clade it may belongs to currently available, Archosauriformes, based on the presence of mesial and distal serrations, a distal keel, and a conical mesiodistal profile. Using data found in other publications and pictures of other teeth, we compare this specimen to other Triassic dental taxa. MNA V10668 shares some similarities with *Crosbysaurus*, *Tecovasaurus*, and several other named taxa, including a teardrop-shaped labiolingual profile, but possesses a unique combination of characteristics not found in other diapsid archosauromorph teeth. We conclude that it is most likely an archosauromorph and probably an archosauriform. This increases the known diversity of

Comment [Anon1]: This is unnecessary unless it was published somewhere else?

tetrapods <u>archosauromorphs</u> from the Chinle Formation and represents the first tooth <u>of this</u> morphotype <u>completely unique toto be found from</u> Utah in the Late Triassic-<u>Period</u>.

1 Introduction:

2 The recovery of vertebrate life from the Permian-Triassic transition resulted in an amazing diverse array of new body forms as life filled ecological voids. This is especially 3 noticeable in the archosaur-line diapsidsomorphs. Many archosauromorph, archosauriform, and 4 archosaurian reptiles reptile-groups adapted and radiated across the globe, filling-or creating 5 6 numerous niches with novel body forms (Nesbitt et al., 2010) and dietary specializations 7 (Heckert, 2004; Parker et al., 2005; Barrett et al., 2011). The ecological revolution of the Triassic 8 Period laid the groundwork for dinosaurs (including modern birds), crocodiles, and mammals to 9 dominate terrestrial vertebrate assemblages for the next 200 million years. 10 It is perhaps somewhat surprising then that the terrestrial record of the Late Upper 11 Triassic Period from Utah, USA has not reflected the global diversification disparity of tetrapod 12 clades. Some of this may be attributed to the greater attention that Late Triassic deposits in 13 neighboring Arizona and New Mexico have received (e.g., Long and Murray, 1995; Heckert et al., 2005; Parker, 2005; Parker et al., 2006). Until recently (Heckert et al., 2006; Gibson, 2013; 14 15 Martz et al., 2014) the Triassic vertebrate record published from Utah has mainly consisted of 16 the ubiquitous phytosaurs (Morales and Ash, 1993). This is has especially true been the case 17 when looking only at body fossils-only. Even with this recent work, Utah's Triassic tetrapod record is low in diversity compared to adjoining states, with the majority of specimens being 18 identified as either phytosaurs or aetosaurs (Martz et al., 2014). While paleontologists were 19 20 making collections in Utah since at least the late 1800s (e.g., Cope, 1875) most of the collection

21 effort has gone towards finding vertebrate fossils in younger rocks.

Comment [Anon2]: Not entirely, Mike Parrish's work in the 1990s, Yale Universities expeditions in the 2000s, some very early plant work and lots of purported trace fossils. You should just say that Chinle fossils from Utah are not as well known as those from Arizona and New Mexico, thus investigations are important. Parrish 1999; Parker et al., 2006; Gauthier et al., 2011.

22	In May of 2014 a paleontological expedition to Comb Ridge in southeastern Utah was
23	conducted by Mission Heights Preparatory High School to Comb Ridge in southeastern
24	Utah(Figure 1). During the expedition two of the authors (AM and IS) discovered a new, very
25	rich (>300 specimens collected representing 15 taxa in two field seasons) microsite they dubbed
26	"The Hills Have Teeth" (Museum of Northern Arizona Locality 1724), approximately five
27	meters south of near a locality that was previously discovered by the senior author (RG). Both at
28	"The Hills Have Teeth" and the alluvial fanarea immediately adjacent to the west of the hill a
29	dozen partial and complete tetrapod teeth were collected. Most The majority of these teeth
30	belonged to phytosaurs (e.g., MNA V10658, MNA V10659, etc.) and temnospondyls (e.g.,
31	MNA V10655, MNA V10656)-amphibians. Two teeth were notably different from the these and
32	not referable to either of the dominant two taxa that dominate the locality assemblage. One,
33	discovered by IS, is was described elsewhere (Gay and St. Aude, 2015). The other was collected
34	by one of the authors (AM) and defied classification at the time of discoveryis the subject of this
35	contribution. Since then we have had the opportunity to compare this new specimen to other
36	identified teeth from across the Chinle and Dockum Formations. That speciemenspecimen, MNA
37	V10668, is compared here to many Triassic diapsids to help classify it in order to assign it to a
38	taxon. We compare it to the non-archosauriform archosauromorphs Azendohsaurus
39	<u>madagaskarensis</u> (Flynn et al., 2010), <i>Mesosuchus browni</i> (Dilkes, 1998), and <i>Terraterpeton</i>
40	hrynewichorum (Sues, 2003), several non-archosaurian archosauriforms including Crosbysaurus
41	harrisae (Heckert, 2004), Crosbysaurus sp. (Gay and St. Aude, 2015), Krzyzanowskisaurus hunti
42	(Heckert, 2005), Lucianosaurus wildi (Hunt and Lucas, 19951994), Protecovasaurus lucasi
43	(Heckert, 2004), Revueltosaurus callendeeri (Hunt, 1989), Tecovasaurus murrayi (Hunt and

Comment [Anon3]: I'm going to suggest again that this tooth be published as part of a broader microvertebrate faunal study as by itself it is not very relevant.

Comment [Anon4]: What is this second locality and why is it relevant?

Comment [Anon5]: Can you abbreviate all future uses or simply refer to it as MNA 1724?

Comment [Anon6]: Are you sure? What characters allow this assignment? Formatted: Font: Not Bold

- Formatted: Font: Not Bold
- Comment [Anon7]: Identification?

Comment [Anon8]: But you also compared it to temnospondyls and what about synapsids?

Formatted: Font: (Default) Times New Roman, 12 pt

Comment [Anon9]: You have already noted that it is different than the tooth from the assemblage that was previously described.

Formatted: Strikethrough

44	Lucas, 1994), unidentified or unnamed archosauriform teeth (Heckert, 2004), and several various	
45	other archosaurs (e.g., Colbert, 1989; Dalla Veccia, 2009; Heckert, 2004).	
46	Materials and Methods:	
47	Standard paleontological field materials and methods were used to collect all specimens	
48	from MNA locality 1725, as described in Gay and St. Aude (2015 including) brushes, dental	
49	tools, and other small hand tools. Specimens were wrapped in toilet paper and placed in plastic	
50	zip-seal bags for transport back to Arizonathe collection facility. Locality data for MNA V10668	
51	<u>1725</u> was recorded using Backcountry Navigator Pro running on an Android OS smartphone. It	
52	was collected in a zip seal collection bag after being removed from the surface exposure by a	l
53	hand. Measurements of MNA V10668 were obtained using a set of Craftsman metal calipers	
54	(model 40257) with 0.05mm precision. Figures were created using GIMP 2.8.4. Photos were	
55	eaptured-taken with an Olympus E-500 DSLR and PC USB digital microscope. MNA V10668	
56	was collected under Bureau of Land Management permit UT14-001S and is permanently housed	
57	at the Museum of Northern Arizona (MNA) along with the exact locality information.	
58	Quantitative and qualitative comparisons of MNA V10668 to published photographs, drawings,	
59	and descriptions, along with direct comparison to material from the Chinle Formation housed at	
60	the MNA were used to assign MNA V10668 to its least-inclusive clade.	
61	Geologic Setting:	l
62	MNA V10668 was found at MNA Locality 1725 on the surface of Hower Member	
63	member of the Chinle Formation at Comb Ridge, Utah (Figure 1), roughly 6 meters from the	
64	base of the <u>a Lower Memberunit[describe the unit]</u> along with teeth of phytosaurs (specimen	
65	<u>#'s)</u> , temnospondyls (specimen #'s), and Crosbysaurus sp. (MNA V10666). (Gay & St. Aude	
66	2015) at MNA Locality 1725. As with earlier work, we hold that The fossil material from found	
	1	

Comment [Anon10]: What is the spatial error for this device?

Comment [Anon11]: You should have an institutional abbreviations section.

Comment [Anon12]: Float or in-situ? Formatted: Strikethrough

67	at locality 1725 originated at MNA Locality 1724 and has washed down slope from The Hills	 Comment
68	Have Teeth outcrop, MNA locality 1724slope. In May of 2015 the precise fossil-bearing horizon	actually fro described a
69	was located at The Hills Have TeethMNA Locality 1724. The fossil-bearing horizon is a	weathered a new disti
70	fossiliferous light grey mudstone with interspersed carbonaceous clasts and numerous teeth	
71	(Figure 2). This mudstone is 13 cm below the <u>a</u> red brown mudstone-grading-to-shale, 8.75	 Comment
72	meters above the base of the Chinle Formation (Gay and St. Aude, 2015; figure 4). The fossil-	is 13 cm be
73	bearing layer, informally referred to as, "the Hills Have Teeth bed," is exposed locally for about	 Comment
74	half a kilometer in the Rainbow Garden (MNA Locality 1721) area. Preliminary stratigraphic	characteris suggest rai
75	work done in the summer of 2015 shows that this bed is discontinuous and appears be It is	Comment
76	present where the base of the Chinle Formation is exposed all-along the western face of Comb	1725 and 1
77	Ridge between the Rainbow Garden area and the San Juan River. At the northern end of Comb	Comment
78	Ridge the lower memberportion of the Chinle Formation is dominated by multiple thick (>10 m)	goographic
79	channel sandstones and conglomerates. At this time it is unknown if these channel deposits are	Formatted
80	laterally equivalent to the Hills Have Teeth fossil bearing bed or whether they are incised into	
81	the lower membergrey bed (?) from younger portions of the Chinle Formation.	 Comment
82	Although the stratigraphy of the Chinle Formation has generally been well studied (e.g.,	out.
83	citations), no detailed work has been published on the exposures at Comb Ridge. Superficial	
84	work conducted by Bennett (1955), Lucas et al. (1997), and Molina-Garza et al. (2003) have	
85	suggested various correlations for the uppermost reddish memberunit. Most recently, Martz et	Comment
86	al. (2014) have suggested thatassigned the uppermost Chinle Formation at Comb Ridge	
87	correlates to the Church Rock Member, as seen in Lisbon Valley to the northeast. We have	Comment
88	elsewhere agreed with this correlation (Gay and St. Aude, 2015).	

Comment [Anon13]: Is there in-situ material at 1725? Otherwise the fossil is actually from 1724 and should be described as from such, noting that it weathered out. Considering the float to be a new distinct locality is confusing.

Comment [Anon14]: What is in between then? Do you mean that the fossil horizon is 13 cm below the red mudstone?

Comment [Anon15]: Generally geologic units are named for geographical areas or characteristics of the bed. Thus I would suggest rainbow garden bed or grey mudstone bed.

Comment [Anon16]: What is this? Is 1725 and 1724 part of 1721?

Comment [Anon17]: It lenses out.

Comment [Anon18]: Is this an official geographic name?

Formatted: Strikethrough

Comment [Anon19]: Need to trace this out.

Comment [Anon20]: And what do they consider it to be?

Comment [Anon21]: How far below the Church Rock is your locality?

89	The lower membergrey bed is more difficult to correlate with other members of the
90	Chinle Formation exposed in southwestern Utah. The studies mentioned above looked primarily
91	at the upper memberunits of the Chinle Formation. The otherwise very extensive, Stewart et al.
92	(1972) monograph on Chinle sedimentology and stratigraphy did not discuss Comb Ridge in any
93	depth, though they do suggest that it correlates with the Monitor Butte Member but only included
94	one sampling locality ("Comb Wash") without specifying precisely where the formation was
95	observed along Comb Wash. In addition the cross section path provided (Stewart et al., 1972;
96	figure 10) does not approach Comb Ridge or Comb Wash so we cannot assess with confidence
97	their sampling. In the same publication Stewart et al. (1972) state that the Monitor Butte cannot
98	be definitively separated from the overlying Petrified Forest Member (=Church Rock Member of
99	Martz et al. 2014). We disagree with this statement as we find the lower member to be distinct
100	throughout the exposure of Comb Ridge compared to the Church Rock Member. Stewart et al.
101	(1972) also state that the Moss Back Member is found in southeastern Utah interbedded with the
102	Monitor Butte, a condition we do not see at Comb Ridge. The Monitor Butte tends to express on
103	the surface as a more greenish grey (Stewart et al., 1972) than the blue grey seen at Comb Ridge
104	but the abundant bentonite in the member supplies the characteristic "popcorn" weathering seen
105	at Comb Ridge and described by Stewart et al. (1972) for the Monitor Butte.
106	Lithologically the lower member part of the Chinle Formation at Comb Ridge is
107	dominated by grey to light grey bentonitic muds and shales with rare localized conglomerates
108	and coarse-grained sandstones. These conglomerates tend to be calcium-cemented and are
109	dominated by sandstone clasts, though chert clasts can occur. These resistant beds tend to be
110	clastically homogeneous and are rarely over 2 meters in thickness. At The Hills Have Teeth beds
111	carbonized plant remains are common but have not been noted at other localities within the

Formatted: Strikethrough

Comment [Anon22]: The lower portion or all of it? My guess would be that your bed is in the Monitor Butte, but more work would need to be done to support this.

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon23]: You are simply providing excuses here. Simply state that your locality is in a grey mudstone x meters below the base of the Church Rock Member (Martz et al., 2014).

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon24]: subjective
Formatted: Strikethrough
Formatted: Strikethrough

112	lower member where trenching has been conducted and stratigraphic sections measured whereas
113	both the Kane Springs beds to the northeast and Monitor Butte Member to the south and west
114	preserve abundant carbonized plant fragments and occasional well-preserved plant material
115	(Stewart et al., 1972; Martz et al., 2014).
116	Biostratigraphy is difficult. The unionid bivalves found in the lower memberpart of the
117	Chinle Formation at Comb Ridge do not allow tight age constraints and no diagnostic vertebrate
118	remains have yet been found outside of Crosbysaurus sp. (Gay and St. Aude, 2015). This places
119	the lower memberportion being deposited during the latest Carnian or earliest Norian stages of
120	the Triassic Period (Heckert and Lucas, 2006). While the Kane Springs memberbeds of the
121	Chinle Formation in Lisbon Valley hasve occasional body fossils (Martz et al., 2014), virtually
122	no fossil material outside of the Rainbow Garden/Hills Have Teeth area have been recovered
123	from the lower portion of the Chinle. This is despite extensive prospecting in May and December
124	of 2014, and March, May, and June of 2015.
125	Fieldwork is ongoing to determine the precise stratigraphic correlation of the lower
126	member gray bed, but at this time we can at least say that MNA V10668, coming from MNA
127	Locality 1724, is from the oldest portion of the Chinle Formation (Gay and St. Aude, 2015) and
128	predates the deposition of the Church Rock Member at Comb Ridge.
129	Description:
130	MNA V10668 is a single tooth crown that is <u>labiolingually</u> flattened labiolingually and
131	concial conical in profile. It measures 5 mm apicobasally and 3mm mesiodistally. The distal side
132	of the tooth crown has a continuous serrated edge from the base to the apex. We interpret this to
133	be the distal edge as it presents a more vertical profile when viewed in labial or lingual view.
134	These-The distal serrations are 0.1 mm in lengthapicobasally. There are with a density of eight

Comment [Anon25]: This is much more appropriate. Describe but do not assign if you are not sure.

Comment [Anon26]: Identified?

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon27]: But you said that you have phytosaurs and metoposaurs? What do you really mean?

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon28]: Based on what evidence? You just said that you have none. If you have no data just say so concisely in the upper section.

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon29]: Where, all of Utah, Arizona, New Mexico? Again think carefully about what you really mean here.

Formatted: Strikethrough

Formatted: Strikethrough

Comment [Anon30]: The entire formation?

Formatted: Strikethrough

Formatted: Strikethrough

135	serrations per millimeter. with anWe estimated estimate there are thirty serrations along the	 Comment [Anon31]: An actual count isn't possible?
136	entirety of the distal keel. The serrations show increasing wear apically with the apex itself	Processo
137	completely worn away during the Mesozoic. We interpret this structure as a wear facet (Figures	Comment [Anon32]: ?? You mean by tooth wear not from a taphonomic effect?
138	<u>3, 4</u>). These <u>The distal</u> serrations are stacked <u>apicobasally</u> and <u>do-are</u> not <u>labiolingually</u> staggered	
139	as they progress to the apex of the specimen. The mesial side of the crown is missing most of its	
140	enamel so identification of features is difficult. None-the-less the dentine does preserve the-traces	
141	of several apical serrations. It is possible that a pronounced mesial keel existed in this region but	
142	there is no evidence of a pronounced keel mesiallythis in the preserved dentine (though this does	
143	not rule out the possibility of an enameled keel). The wear on the apex is well rounded with no	 Comment [Anon33]: Does this poor
144	jagged edges. There is Coupled with the fact that no root is preserved and a small resorbtion pit is	identification?
145	present on the base,-we suggesting this that MNA V10668 is a shed tooth crown. The loss of	comment [Anon34]: What does this meannot broken? The figured specimen shows that serrations are present on both edges
146	enamel from the majority of the tooth surface does not appear recent, as all the enamel edges are	
147	smooth. It is possible that this tooth was digested. Although there is no pitting observed on the	
148	preserved enamel surface the dentine shows occasional pitting. We have interpreted these pits as	
149	transport damage, but the presence of both coprolites and a digested theropod or rauisuchian	
150	tooth (uncatalogued MNA specimen) collected in the 2015 field season do not allow us to rule	 Comment [Anon35]: ??
151	out this second option. The tooth has a small chip on its base, likely a result of recent weathering	
152	and transport due to the freshness of the break, distal to the midline (Figure 3, 4).	
153		
154	Systematic Paleontology:	Formatted: Indent: First line: 0"
155	Diapsida Osborn, 1903	
156	Archosauromorpha Von Huene, 1946	
157	?Archosauriformes Gauthier, 1986	 Comment [Anon36]: If you question this ID, then you can only identify the
		specimen to Archosauromorpha.

159	Diagnosis:		
160	Teeth from various Triassic animals are common in microvertebrate assemblages and	_	Formatted: Strikethrough
161	many are difficult to diagnose (Heckert, 2004). This can be due to both plesiomorphic tooth		
162	structure across clades as well as variation within tooth rows. None the less, we can diagnose		Comment [Anon37]: Unnecessary. Just
163	MNA V10668 as being an archosauriform based on the following characters from Godefroit and		
164	Cuny (1997): tooth conical in mesiodistal profile with a single cusp and possesses serrations on		
165	both the mesial and distal edges. The tooth (at least on the distal edge) possesses an enamel keel		
166	and is labiolingually compressed. Since MNA V10668 is a shed tooth crown we cannot assess	_	Comment [Anon38]: Tooth is conical (but labiolingually compressed) serrated and
167	the character of deep thecodont implantation, though Godefroit and Cuny (1997) regard this as a		covered in enamel. I don't believe this diagnoses to Archosauriformes.
168	dubious character in any case.	\backslash	Archosauromorpha given the presumed thecodont implantation.
169			Comment [Anon39]: You should still be able to tell.
170	Differential Diagnosis Comparisons:		
170 171	Differential Diagnosis Comparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along		
170 171 172	Differential DiagnosisComparisons: MNA V10668 differs from most described Triassic teeth with serrations on only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the		Comment [Anon40]: You can see in the
 170 171 172 173 	Differential Diagnosis Comparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth.
 170 171 172 173 174 	Differential DiagnosisComparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed?
170 171 172 173 174 175	Differential DiagnosisComparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only possessing distal serrations.		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed?
170 171 172 173 174 175 176	Differential Diagnosis Comparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only possessing distal serrations. Azendohsaurus madagaskarensis is an archosauromorph reptile-from Madagascar known		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed? Formatted: Font: (Default) Times New Poman 12 pt
170 171 172 173 174 175 176 177	Differential DiagnosisComparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only possessing distal serrations. Azendohsaurus madagaskarensis is an archosauromorph reptile-from Madagascar known from reasonably complete remains (Flynn et al., 2010). Its dentition is well documented and		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed? Formatted: Font: (Default) Times New Roman, 12 pt
170 171 172 173 174 175 176 177 178	Differential Diagnosis Comparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only possessing distal serrations. Azendohsaurus madagaskarensis is an archosauromorph reptile from Madagascar known from reasonably complete remains (Flynn et al., 2010). Its dentition is well documented and illustrated, allowing comparisons to be made easily(Flynn et al., 2010). Azendohsaurus teeth are		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed? Formatted: Font: (Default) Times New Roman, 12 pt
170 171 172 173 174 175 176 177 178 179	Differential Diagnosis Comparisons: MNA V10668 differs from most described Triassic teeth with serrations on-only along one sideedge. Because this morphology may be due to taphonomic processes discussed above the tooth is heavily damaged, we compare MNA V10668 to other diapsids-archosauromorphs with thecodont or sub-thecodont dentition with both mesial and distal serrations as well as those only possessing distal serrations. Azendohsaurus madagaskarensis is an archosauromorph reptile-from Madagascar known from reasonably complete remains (Flynn et al., 2010). Its dentition is well documented and illustrated, allowing comparisons to be made easily(Flynn et al., 2010). Azendohsaurus teeth are slightly recurved with a basal constriction while whereas MNA V10668 appears to be conical		Comment [Anon40]: You can see in the provided figure that there are serrations on both edges of the tooth. Comment [Anon41]: Where was this discussed? Formatted: Font: (Default) Times New Roman, 12 pt

158

181	significant wear facets or worn denticles, as MNA V10668 does. The denticles that exist on the
182	teeth of Azendohsaurus are apically directed. In MNA V10668 the preserved distal denticles
183	appear perpendicular to the long axis of the tooth. The denticles of Azendohsaurus are also much
184	larger (>0.5 mm) and fewer in number than those of MNA V10668, having between four to 18
185	on the carinae, depending on tooth position. MNA V10668 elearly does not represent a specimen
186	of cannot be assigned to Azendohsaurus. Flynn et al. (2010) also report that the teeth of
187	Azendohsaurus do not possess wear facets, a feature that is seen in MNA V10668.
188	Mesosuchus browni is a basal rhynchosaur, deeply nested within <u>A</u> archosauromorpha,
189	(Dilkes, 1998), and is known from multiple specimensat least four specimens. The dentition of
190	Mesosuchus is rounded in cross-section and conical in profile. The tooth-jaw junction is not well
191	preserved enough to say whether the teeth had thecodont implantation. Dilkes (1998) noted an
192	unusual wear facet on the teeth of Mesosuchus, which is why it is included here. Despite MNA
193	V10668 and Mesosuchus both having erosional surfaces, those on Mesosuchus are mesiolabially
194	directed while whereas in MNA V10668 the wear is mesiobasal. Mesosuchus dentition also lacks
195	serrations or denticles. Indeed the mesial and distal faces, as illustrated and described by Dilkes
196	(1998) show teeth round to square in cross section and conical in labial or lingual view. Coupled
197	with the differences in cross sectional profile Taken all together the teeth of Mesosuchus are not a
198	good match for -MNA V10668 and as such does not represent a specimen of Mesosuchus or any
199	rhynchosaur by extension.
200	The unusual archosauromorph Terraterpeton hrynewichorum from the Triassic of Nova
201	Scotia was first described by Sues (2003). The teeth of Terraterpeton are as odd as the rest of its
202	skull. The teeth are round to oval in cross-section, with the posterior-most teeth being much

203 broader labiolingually than mesiodistally. The teeth have a distal triangular cusp and a flattened **Comment [Anon42]:** This can be the result of individual variation, even between teeth in the same jaw.

Comment [Anon43]: The type of implantation is known for rhynchosaurs.

Comment [Anon44]: Wear facets aren't a good comparative character.

204	area mesially on each occlusal surface. The narrow, conical profile and labiolingually		
205	compressed cross-section of MNA V10668 strongly differs from the teeth of Terraterpeton in all		
206	these aspects, excluding it as the animal that possessed MNA V10668 during the Triassic.		
207	Crosbysaurus harrisae (Heckert, 2004) is an archosauriform that has serrations on both	_	Comment [Anon45]: Maybe. Should be
208	mesial and distal sides of the tooth, with the distal serrations being much larger than those on the		
209	mesial keel. These denticles are subdivided and on the distal keel they point apically.		
210	Crosbysaurus harrisae and MNA V10668 have a similar shape and size. Both MNA V10668		
211	and Crosbysaurus teeth are similar in size apicobasally and have the same triangular shape in		
212	labial and lingual views. Crosbysaurus teeth are distally curved on the apicomesial keel, a		
213	condition not seen-present in MNA V10668.		
214	MNA V10668 and MNA V10666, referred to Crosbysaurus sp. by Gay and St. Aude	_	Formatted: Strikethrough
215	(2015), were both found at the same locality. Because of the close association between these two		
216	specimens we paid special attention to MNA V10666 when considering the affinities of this new		
217	specimen. <u>.</u> MNA V10666 does lacks serrations on the mesiobasal keel, as does MNA V10668		
218	appears to as well. That is where the similarities end. The tooth referred to as <i>Crosbysaurus sp</i> .		
219	by Gay and St. Aude (2015) has clear mesial denticles towards the apex. The distal denticles are		
220	much larger and subdivided, as in all other Crosbysaurus teeth (Heckert, 2004). While Whereas	_	Formatted: Font: Italic, Strikethrough
221	MNA V10668 is labiolingually compressed like MNA V10666 and other known <i>Crosbysaurus</i>		Formatted: Strikethrough
222	teeth, it is not as mesiodistally narrow. Considering that Crosbysaurus serrations are larger,		romatted. Font. Italic
223	present on the mesial side, apically directed, and the teeth tend to be mesiodistally narrower it is		
224	doubtful that MNA V10668 is a Crosbysaurus tooth.	_	Comment [Anon46]: You are not sure?
225	Krzyzanowskisaurus hunti (Heckert 2005) is a (presumably) small (presumably)		
226	herbivorous pseudousuchianarchosauromorph known only from dental remains. It superficially		Comment [Anon47]: Can't tell this just from the teeth.
			<u></u>

227	resembles Revueltosaurus <u>callenderi</u> but can be diagnosed by the presence of a cingulum on the	
228	base of the tooth (Heckert, 2002). Since MNA V10668 does not have a cingulum it is obvious	
229	that it cannot be apresently be specimen of referred to Krzyzanowskisaurus.	Comment [Ano
230	Lucianosaurus wildi (Hunt and Lucas, 1995) is similar to other isolated Triassic teeth	
231	described in the literature by having enlarged denticles and a squat shape with convex mesial and	
232	distal edges, being mesiodistally broad while apicobasally short. MNA V10668 is taller than it is	
233	long and has relatively small denticles. MNA V10668 does not represent Lucianosaurus.	
234	Protecovasaurus lucasi (Heckert, 2004) is diagnosed by having a recurved mesial surface	
235	where the apex is even with or overhangs the distal margin. The denticles on both the mesial and	
236	distal keels are apically directed. In all these features the teeth of Protecovasaurus do not match	
237	the features seen in MNA V10668.	
238	Revueltosaurus callenderi (Hunt, 1989; Heckert, 2002; Parker et al., 2005) has serrations	
239	on both the mesial and labial sides. Its serrations are proportionally larger and closer together.	
240	The teeth of Revueltosaurus are broader mesiodistally compared to their apicobasal height. In	
241	general, <i>Revueltosaurus</i> teeth have more serrations on the distal keel of the tooth than at the	
242	mesial side of the tooth. Furthermore, Revueltosaurus has been distinguished by more than it's	
243	teeth (Parker et al., 2005). MNA V10668 is labiolingually narrower than the teeth of	
244	<i>Revueltosaurus</i> . These differences rule out the possibility that MNA V10668 is <i>Revueltosaurus</i> .	Comment [Ano
245	Heckert (2004) described some tetrapod teeth found from other localities across the	been done in the V10668.
246	Chinle Formation. Some of these teeth are from phytosaurs (Heckert, 2004, figure 43). NMMNH	
247	P-30806 for example is roughly conical in outline and somewhat labiolingually compressed. The	
248	serrations are orientied perpendicular to the long axis of the tooth. In these regards young	
249	phytosaur teeth are similar to MNA V10668. Unlike MNA V10668, however, these teeth are	

on48]: You are assuming not heterodont.

on49]: All of the this section could have e description of MNA

250	moderately curved lingually and have serrations on their mesial surface. In addition the
251	serrations on phytosaur teeth, like the onesthose figured in Heckert (2004), are more densedenser
252	(>14 per millimeter) compared to MNA V10668. Phytosaur teeth in general, especially the teeth
253	from segments of the jaw posterior to the premaxillary rosette, tend to be more robust than MNA
254	V10668. Although phytosaurs are the most common taxa represented at The Hills Have
255	TeethMNA V1724 it not likely MNA V106668 is a phytosaur tooth.
256	Heckert described another specimen, NMMNH P-34013 (Heckert, 2004, figure 20 <u>A-C</u>),
257	that is roughly the same size as MNA V10668. Both have a resorption pit at the base and,
258	unusual for predatory Triassic archosauriformes, a wear facet on the tip. This is a feature shared
259	with MNA V10668. However the serrations on NMMNH P-34013 are smaller (<0.1 mm) than
260	MNA V10668, and has a slight curve unlike MNA V10668. Heckert described this tooth as
261	belonging to an indeterminate archosauriformes. Despite their differences this tooth, NMMNH
262	P-34013, is the closest in morphology to the tooth to-MNA V10668 yet identified.
263	Based on the examination of an <u>uncatalogued skull cast of the theropod dinosaur</u>
264	Coelophysis bauri (Cleveland Museum 31374) at Mission Heights Preparatory High School and
265	from the literature (Colbert, 1989), it can be seen that teeth from the mid posterior region of the
266	maxilla of Coelophysis Coelophysis and MNA V10668 have a similar tooth shapemorphology in
267	labial view and sizeapicobasal length. This is especially true for teeth from the mid posterior
268	region of the maxilla of <i>Coclophysis</i> . Both teeth are 5mm tall from the apex to the base. When
269	they are looked at closely many things stand out as to why they are different. They differ by from
270	Coelophysis teeth are being naturally recurved, at least slightly, whereas MNA V10668 does not
271	have a noticeable curve to it. Coelophysis teeth (CM 31374; Colbert, 1989) have small serrations
272	along the mesial and distal sides. Coelophysis teeth tend to be even more mesiodistally

Formatted: Strikethrough

Formatted: Font color: Auto, Strikethrough

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Strikethrough

Formatted: Font color: Auto, Strikethrough

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Strikethrough

Formatted: Font color: Auto, Strikethrough

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto, Strikethrough

Formatted: Strikethrough

273	compressed and the serrations at the distal side are completely different. Coelophysis tooth
274	serrations are smaller and are closer together to each other. We can conclude that -MNA V10668
275	cannot be a <i>Coelophysis</i> tooth and indeed is unlikely to be a theropod dinosaur at all. <u>Although</u>
276	the enamel of MNA V10668 is not well preserved, it does not preserve any surface features such
277	as longitudinal grooves, ridges, fluting, or undulations that are characteristic of theropod
278	dinosaur teeth (Hendrickx et al., 2015). In addition, while MNA V10668 is moderately laterally
279	compressed, Triassic theropod dinosaur teeth are compressed even more so (Colbert, 1989).
280	While pterosaurs are rare from the Triassic of North America, several good examples are
281	known from Europe. Perhaps the best illustrated in terms of dentition is Austriadactylus teeth
282	(Dalla Veccia, 2009). and MNA V10668 are completely different differs from Austriadactylus in
283	shape and size. Austriadactylus teeth are smaller and sharper; also they have serrations at the
284	mesial and labial sides of the tooth. The serrations are completely different because they are
285	larger and possess more distinct tips. Austriadactylus has a few different types of teeth. Most
286	teeth are small, have three cusps, and a slight curve to them. Other teeth have only one distinct
287	cusp and have a slight curve to them. They have very few and large serrations. MNA V10668
288	differs from all of the Austriadactylus teeth as it has no visible curve, and serrations along the
289	mesial side. Seeing this, MNA V10668 does not represent Austriadactylus.
290	Reported Prourported Chinle prosauropod early sauropodomorph teeth, such as those
291	figured in Heckert (2004, figures 45, 83, 84) are extremely mesiolaterally compressed. They also
292	exhibit serrations on the mesial and labial sides of the tooth. Its serrations are relatively larger,
293	closer together, and are apically directed. Also early sauropodomorph prosauropod teeth have a
294	distinctly "pointy" apex with no wear facets. Its shape is completely different because this: MNA
295	V10668 is relatively wider labiolingually and apicobasally smaller than the reported <u>early</u>

Comment [Anon50]: Needs a better description.

296	sauropodomorph prosauropod specimens. There is no possibility that the reason to classify this
297	specimen is an <u>early sauropodomorphprosauropod</u> . It should also be noted that the extreme
298	convergence seen in Azhendouhsaurus (Flynn et al., 2010) makes the identification of early
299	sauropodomorphs prosauropods from the Chinle Formation tentative at best (Nesbitt et al.,
300	<u>2007)</u> .
301	The Some of the most common vertebrate remains from the Chinle Formation are
302	phytosaur teeth (Heckert, 2004; Martz et al., 2014; pers. obs.). Despite the small size of MNA
303	V10668 it is possible that this specimen pertains to a juvenile phytosaur. To test this hypothesis
304	two juvenile phytosaur snouts identified as juveniles in were examined at the the collections at
305	the Museum of Northern Arizona were examined. One of these, PEFO 13890/MNA V1789 was
306	collected by George Billingsley in 1979 from the Upper-Petrified Forest Member of the Chinle
307	Formation in Petrified Forest National Park (PEFO). It represents articulated paired premaxillae
308	with 15 preserved alveoli on the right and 14 on the left, all of which save one are empty. The
309	total preserved length of this specimen is 9.3 cm. While identified in collections as
310	Pseudopalatus <u>"Machaeroprosopus"</u> zunii there are no preserved autapomorphies to support this
311	assignment.
312	The second specimen, MNA V3601, is a partial right dentary from the Blue Mesa
313	Member (Parker and Martz, 2011 said this not Ramezani et al., 2014) of the Chinle Formation
314	(Ramezani et al., 2014) Placerias Quarry, near St. Johns, Arizona identified as Leptosuchus sp.
315	(Long and Murray, 1995). MNA V3601 is 4.95 cm in length, preserving the anterior tip and eight
316	alveoli. In this specimen several of the tooth crowns are present and show wear while whereas
317	others are broken off at the gum lineoral margin or inside the alvelolus.

Comment [Anon51]: But you said above that it does not.

Comment [Anon52]: Not correct as according to Stocker (2010) Leptosuchus occurrences are presently restricted to Texas.

Formatted: Font: Italic

318	In both PEFO 13890/MNA V1789 specimens the juvenile phytosaurs exhibit	
319	remarkablethe tooth row exhibits homodonty in the alveolar cross sections (Figure 5). We infer	
320	that while crown height may have varied the crowns themselves would have had relatively	
321	uniform labiolingual profiles. This is supported by the single unerupted tooth crown present in an	
322	alveolus in the right premaxilla. This tooth is lingually curved and symmetrical in mesiodistal	
323	profile. The tooth lacks any visible serrations (Figure 6).	 Comment [Anon53]: Variation, not true for all invenile specimens. This could also
324	In MNA V3601 the erupted crown heights vary but their labiolingual and mesiodistal	be because it is not erupted?
325	profiles are remarkably similar (Figure 5), especially This is notable considering the	
326	heterodonty seen-present in more mature phytosaurs (Heckert, 2004) though we do acknowledge	
327	that not having complete juvenile skulls available limits the inferences we can make about	
328	overall tooth form. While Whereas MNA V10668 is roughly the right size of tooth to have come	 Comment [Anon54]: Right, so you really cannot do what you are trying to
329	from a juvenile phytosaur similar in ontogenetic age to PEFO13890/MNA V1789 or MNA	accomplish here.
330	V3601, the basal structure of the tooth is unlike any <u>of the</u> preserved juvenile phytosaur teeth or	
331	alveoli. Both undisputed juvenile phytosaur specimens have round alveoli with serrated or	
332	unserrated conical teeth preserved (Figure 7, 85). In addition, all preserved teeth in MNA V3601	
333	do not show any lingual curvature as seen in MNA V10668. While adult-larger phytosaurs,	
334	presumed to be ontogenetically more mature, have triangular, lingually curved teeth in their	
335	dentition, especially as one moves posteriorally (Long and Murray, 1995; Hungerbühler, 2000;	
336	Heckert, 2004), these seem to be absent in juveniles from the preserved portions specimens we	
337	have on handobserved at the MNA, though additional juvenile phytosaur jaws would help refine	
338	our comparison. The lingually curved teeth of adult phytosaurs are also much more robust, with	 Comment [Anon55]: Obviously.
339	labiolingually wide basal and mid-crown section, unlike the laterally compressed and teardrop-	
340	shaped base of MNA V10668. It may be that phytosaur dentition changed during ontogeny to	

341	adapt to a changing diet, similar to what has been proposed to Tyrannosaurus (Horner et al.,		
342	2011; Bates and Falkingham, 2012) and is seen today in Alligator (Subalusky et al., 2009 and		
343	references therein). Even considering this we do not think that MNA V10668 can be assigned to		
344	the phytosauria Phytosauria due tobecause of the marked differences between it and all other		
345	known phytosaur teeth.		
346			
347	Conclusions:		
348	MNA V10668 cannot be identified as any previously described Triassic taxon as it does		
349	not have any distinguishing autapomorphies and preserved preserves a unique combination of		
350	characters. However, this tooth can be identified at least as <u>A</u> archosauriformes- <i>incertae sedis</i> .		
351	MNA V10668 has many characteristics character states that match up with other		
352	archosauriformes, including labiolingual compression and the presence of serrations on distinct		
353	carinae. Another taxonomically indeterminate tooth, NMMNH P-34013, is the closest tooth		
354	morphologically to MNA V10668 and likely belongs to the morphogroup Morphotype T of		Comment [Anon56]: Is this a real term?
355	Heckert (2004) Despite their similarities it is obvious that MNA V10668 is morphologically		
356	distinct from NMMNH P-34013, primarily due to the smaller serrations and slight lingual		
357	curvature found in NMMNH P-34013. Although isolated teeth have been described before from		
358	Utah (Heckert et al., 2006; Gay and St. Aude, 2015) this is the first occurrence of tooth		
359	<u>M</u> emorphotype <u>T</u> described from Utah and the first to not be assigned to an existing genus of		
360	Triassie tetrapod. It is likely that other teeth now in collections may also represent unique	/	Comment [Anon57]: Bold claim.
361	morphotypes or previously described morphotypes not previously identified from Utah. As such		Comment [Anon58]: This is why the material should be covered as an assemblage paper.
362	it may represent an animal endemic to what is now Utah, though it may also represent a previous	/	Comment [Anon59]: No because Heckert describes it from outside of Utah.
363	identified taxon for which little is known of its dentition.	/	Comment [Anon60]: This makes no sense. You mean nothing is known from the rest of the skeleton. You know the dentition from the tooth.

364		
365	unrecognized clade of diapsids from the Chinle Formation in Utah, In addition, most of the	
366	tetrapod record from Utah's Chinle Formation has come from the Church Rock Member (Martz	
367	et al., 2014; RG pers. obs.) This specimen, coming from the Llowerst portionMember of the	
368	Chinle Formation, demonstrates increased diversity in an older part of the formation that has not	
369	been studied until recently (Gay and St. Aude, 2015).	
370	Work is ongoing at Comb Ridge by crews from Mission Heights Preparatory High	
371	School. The tetrapod diversity of Chinle Formation at Comb Ridge will continue to increase as	
372	new discoveries come to light. It is hoped that additional taxa can be added to the growing faunal	
373	list assemblage with additional fieldwork in the near future.	
374	Acknowledgements:	
375	The authors would like to thank Jason Durivage, Gary Shepler, Steven Hall, and Deborah	
376	Avey for their assistance with fieldwork while MNA V10668 was collected. We would also like	
377	to thank David and Janet Gillette for their assistance with collections and access to specimens.	
378	Sterling Nesbitt, Matthew Wedel, and an anonymous reviewer provided comments that greatly	
379	improved the manuscript. We would also like to thank ReBecca Hunt-Foster for her assistance	
380	with our permit, UT14-001S. Nicole Helmke provided support and help to RG during the	
381	revision of this manuscript but unfortunately passed away before she could see it finished. She is	
382	thanked and missed.	
383 384	Works Cited References	
385	Barrett PM., Butler RJ., Nesbitt, SJ., 2011. The roles of herbivory and omnivory in early	
386	dinosaur evolution. Earth and Environmental Science Transactions of the Royal Society of	1/
387	Edinburgh 101(3-4):383-396	1//

Formatted: Strikethrough

 Comment [Anon61]: Not true. Parrish, 1999; Parker et al., 2006; Gauthier et al., 2011 all describe vertebrate material from the lower part of the Chinle Formation of Utah.

 Formatted: Strikethrough

 Formatted: Strikethrough

 Formatted: Strikethrough

 Formatted: Strikethrough

 Formatted: Strikethrough

 Formatted: Strikethrough

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto Formatted: Font color: Auto

388	Bates KT., Falkingham, PL., 2012. Estimating maximum bite performance in <i>Tyrannosaurus</i>	Formatted: Font: Bold, Font color: Auto
380	rar using multi-body dynamics Biology Latters 8:660-664	Formatted: Font color: Auto
390	Bennett HS. 1955. Photogeologic map of the Elk Ridge-15 [Hotel Rock] quadrangle. San Juan	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
391	County, Utah, Geologic Map, Salt Lake City: Utah Geological Survey.	Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto, Pattern: Clear
392	Colbert EH. 1989. The Triassic dinosaur Coelophysis. Flagstaff, AZ: Museum of Northern	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
393	Arizona Press.	Formatted: Font color: Auto
204	Corres ED 1975 Demonstration of Colorem and in marting of Neural a 1974	Formatted: Font: Bold, Font color: Auto
394	Cope ED, 1875, Report upon the collections of fishes made in portions of Nevada, Utan,	Formatted: Font color: Auto
395	California, Colorado, New Mexico, and Arizona: during the years 1871, 1872, 1873, and 1874,	Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto
396	Dalla Vecchia, FM. 2009. The first Italian specimen of Austriadactylus cristatus (Diapsida,	Formatted: Font: Bold, Font color: Auto
397	Pterosauria) from the Norian (Upper Triassic) of the Carnic Prealps. Rivista Italiana di	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
398	Paleontologia e Stratigrafia, 115 (3):291-304.	Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto
399	Dilkes DW. 1998. The early Triassic rhynchosaur Mesosuchus browni and the interrelationships	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
400	of basal archosauromorph reptiles. Philosophical Transactions of the Royal Society B: Biological	Formatted: Font color: Auto
		Formatted: Font: Bold, Font color: Auto
401	Sciences 353 :501–541.	Formatted: Font color: Auto
402	Flynn J.L. Neshitt S.L. Parrish JM., Ranivoharimanana L., Wyss AR 2010. A new species	Formatted: Font: Bold, Font color: Auto
102		Formatted: Font color: Auto
403	of Azendohsaurus (Diapsida: Archosauromorpha) from the Triassic Isalo Group of southwestern	Formatted: Font: Bold, Font color: Auto
404	Madagascar: cranium and mandible Palaeontology 53 :669–688	Formatted: Font color: Auto
404	Madagasear. cramam and mandrole. I alacomology 55.007 000.	Formatted: Font: Bold, Font color: Auto
405	Gauthier JA. 1986. Saurischian monophyly and the origin of birds. In: Padian K, ed., The origin	Formatted: Font color: Auto
406	of birds and the evolution of flight, Memoirs of the California Academy of Sciences. San	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
407	Francisco: California Academy of Sciences vol 8:1 55	Formatted
407	Tancisco. Camorina Academy of Sciences. vol. 6.1-35	Formatted
408	Gay RJ., Aude IS. 2015. The first occurrence of the enigmatic archosauriform Crosbysaurus	Formatted: Font color: Auto
400	Hackart 2004 from the China Formation of southarm Utah Dearl 2	Formatted
409	necken 2004 nom die Chime Formation of southern Utan. Peerj 3.	Formatted
		Formatted: Font color: Auto

...

... (...

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Bold, Font color: Auto

410	Gibson SZ.	2013.	A new	hump-bac	ked gii	nglymodia	n fish	(Neopt	teryg	gii, Se	emion	otifo	rmes)	from

411 the Upper Triassic Chinle Formation of southeastern Utah. Journal of Vertebrate Paleontology

- **412 33**:1037–1050.
- 413 <u>Godefroit P., Cuny G. 1997, Archosauriform Teeth from the Upper Triassic of Saint-Nicolas-d-</u>
- 414 *Port (northeastern France)*. Palaeovertebrata. <u>26 (1-4): 1-34</u>
- 415 Heckert AB., Lucas SG., Hunt AP. 2005. Triassic vertebrate fossils in Arizona. New Mexico
- 416 <u>Museum of Natural History and Science Bulletin</u>, 29:16-44.
- 417 Hendrickx C., Mateus O., Araújo R. 2015. A proposed terminology of theropod teeth
- 418 (Dinosauria, Saurischia), Journal of Vertebrate Paleontology, 35:5, e982797
- 419 Heckert AB. 2002. Heckert AB, Lucas SG, eds. A revision of the Upper Triassic ornithischian
- 420 *dinosaur Revueltosaurus, with a description of a new species*, Upper Triassic stratigraphy and
- 421 paleontology. Albuquerque: New Mexico Museum of Natural History and Science. vol. 21:253-
- 422 268
- 423 Heckert AB. 2004. Late Triassic microvertebrates from the lower Chinle (Otischalkian-
- 424 Adamanian: Carnian), southwestern USA. Albuquerque: New Mexico Museum of Natural
 425 History and Science. Vol. 27.
- Heckert AB. 2005, Heckert AB, Lucas SG, eds. *Krzyzanowskisaurus*, a new name for a probable
 ornithischian dinosaur from the Upper Triassic Chinle Group, Arizona and New Mexico, USA,
 Vertebrate paleontology in Arizona. Albuquerque: New Mexico Museum of Natural History and
 Science. vol. 29:77-83
- 430 Heckert AB, Lucas SG. 2006. Harris JD, Lucas SG, Spielmann JA, Lockley MG, Milner ARC,
- 431 Kirkland JI, eds. Micro- and small vertebrate biostratigraphy and biochronology of the Upper

Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto

Formatted: Font: Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto, Pattern: Clear

432	Triassic Chinle Group, southwestern USA, The Triassic-Jurassic terrestrial
433	transition. Albuquerque: New Mexico Museum of Natural History and Science. vol. 37:94-104
434	Heckert, AB., Lucas, SG., DeBlieux, DD., Kirkland, JI. Harris JD, Lucas SG, Spielmann JA,
435	Lockley MG, Milner ARC, Kirkland JI, eds. A revueltosaur-like tooth from the Petrified Forest
436	Formation (Upper Triassic: Revueltian) from Zion National Park, The Triassic-Jurassic
437	Terrestrial Transition. Albuquerque: New Mexico Museum of Natural History and Science. vol.
438	37 :588-591
439	Horner JR., Goodwin MB., Myhrvold N., 2011, Dinosaur Census Reveals
440	Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek
441	Formation (Maastrichtian), Montana, USA. PLoS ONE 6:e16574
442	Hungerbühler, A. 2000. Heterodonty in the European phytosaur Nicrosaurus kapffi and its
443	implications for the taxonomic utility and functional morphology of phytosaur
444	dentitions. Journal of Vertebrate Paleontology, 20(1):31-48.
445	Hunt AP. 1989. A new ?ornithischian dinosaur from the Bull Canyon Formation (Upper
446	Triassic) of east-central New Mexico. In: Lucas SG, Hunt AP, eds. Dawn of the age of dinosaurs
447	in the American Southwest. Albuquerque: New Mexico Museum of Nature and Science. 355-358
448	Hunt AP, Lucas SG. 1994. Ornithisichian dinosaurs from the Upper Triassic of the United
449	States. In: Sues H-D, Fraser NC, eds. In the shadow of the dinosaurs: early Mesozoic tetrapods.
450	Cambridge: Cambridge University Press. 227-241
451	Lucas SG, Heckert AB, Estep JW, Anderson OJ. 1997. Stratigraphy of the Upper Triassic
452	Chinle group, four corners region. New Mexico Geological Society Guidebook48:81-107
453	Long RA., Murry PA. 1995, Late Triassic (Carnian and Norian) tetrapods from the
454	southwestern United States. Albuquerque: New Mexico Museum of Natural History and Science.

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font: Not Bold, Italic, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic, Font color: Auto Formatted Formatted: Font color: Auto Formatted Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted ... Formatted (... Formatted ſ... Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto

455	Martz JW, Irmis RG, Milner ARC. 2014. Lithostratigraphy and biostratigraphy of the Chinle		Formatted: Font: Bold, Font color: A	Auto
456	Formation (Upper Triassic) in southern Lisbon Valley, southeastern Utah. UGA Publication		Formatted: Font color: Auto	
457	43 (2014):397-446.		Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
458	Molina-Garza RS, Geissman JW, Lucas SG. 2003. Paleomagnetism and magnetostratigraphy		Formatted: HTML Cite, Font: (Defau Times New Roman, 12 pt, Font colo Auto, Pattern: Clear	ult) >r:
459	of the lower Glen Canyon and upper Chinle Groups, Jurassic-Triassic of northern Arizona and	/	Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
460	northeast Utah, Journal of Geophysical Research: Solid Earth 108(B4):1-24	/	Formatted: Font color: Auto	
461	Morales, M., Ash. SR, 1993. The last phytosaurs. The Nonmarine Triassic. New Mexico		Formatted: Font: Bold, Font color: A	Auto
101	normely neg is in provide the new phytostation the rooman are transiented		Formatted: Font color: Auto	
462	Museum of Natural History and Science. vol. 3:357-358	/	Formatted: Font: Bold, Font color: A	Auto
463	Neshitt SI Irmis RB Parker WG 2007 A critical re-evaluation of the Late Triassic		Formatted: Font color: Auto	
400	Active and the second		Formatted: Font: Bold, Font color: A	Auto
464	Dinosaur taxa of North America. Journal of Systematic Paleontology 5: 209-243		Formatted: Font color: Auto	
465	Nesbitt SJ., Sidor CA., Irmis RB., Angielczyk KD., Smith RMH., Tsuji LA. 2010.	/ /	Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
466	Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature		Formatted: HTML Cite, Font: (Defau Times New Roman, 12 pt, Font colo Auto, Pattern: Clear	ult) >r:
467	464 :95–98.		Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
468	Osborn HF. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and		Formatted: Font color: Auto	
469	Diapsida, Science 17(424):275-276	/ /	Formatted: Font: Bold, Font color: A	Auto
470	Parker WG. 2005. Faunal review of the Upper Triassic Chinle Formation of Arizona. Mesa		Formatted: Font: (Default) Times N Roman, 12 pt, Bold, Font color: Auto	lew o
471	Southwest Museum Bulletin, 11: 34-54.		Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
472	Parker WG., Ash SR., Irmis RB. 2006, A century of research at Petrified Forest National Park:		Formatted: Font: (Default) Times N Roman, 12 pt, Bold, Not Italic, Font Auto	lew color:
473	geology and paleontology. Flagstaff: Museum of Northern Arizona.	()))	Formatted: Font color: Auto	
474	Ramczani J., Fastovsky DE., Bowring SA. 2014. Revised chronostratigraphy of the Lower		Formatted: Font: (Default) Times N Roman, 12 pt, Font color: Auto	lew
475	Chinle Formation strata in Aarizona and New Mexico (USA): high precision U Pb		Formatted: Font color: Auto	
-			Formatted: Font: Bold, Font color: A	Auto
476	geochronological constraints on the Late Triassic evolution of dinosaurs. American Journal of		Formatted: Font color: Auto	
477	Science 314. 981 1008		Formatted	
711	Secure 011, 701 1000	/	Formatted	(
			(

....

<u>...</u>

Formatted

- 478 <u>Stewart JH., Poole FG., Wilson RF., Cadigan RA., Thordarson W., Albee HF.</u>
- 479 <u>1972. Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the</u>
- 480 *Colorado Plateau region* (No. 690). Geological Survey (US).
- 481 Subalusky AL., Fitzgerald LA., Smith LL. 2009. Ontogenetic niche shifts in the American
- 482 <u>Alligator establish functional connectivity between aquatic systems. *Biological Conservation*</u>
- 483 <u>142: 1507-1514</u>
- 484 **Sues H-D. 2003**. An unusual new archosauromorph reptile from the Upper Triassic Wolfville
- 485 Formation of Nova Scotia. Can. J. Earth Sci. Canadian Journal of Earth Sciences 40: 635–649.
- 486 Von Huene F. 1946. Die grossen Stamme der Tetrapoden in den geologischen
- 487 Zeiten. Biologisches Zentralblatt 65(7/12):266-275

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto
Formatted: Font: Bold, Font color: Auto
Formatted: Font color: Auto

Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: Bold, Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto Formatted: HTML Cite, Font: (Default) Times New Roman, 12 pt, Font color: Auto, Pattern: Clear Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font color: Auto