BALSA Supplementary Document

Version 1.0

Department of Computer Science, The University of Hong Kong



Catalogue

1

2

4

5

6

Overview
1.1 Data Input
1.2 Data Output

1.3  Workflow
Resource Consumption
2.1 CPU
2.2 GPU
2.3 RAM
24 10
2.5 Tweak

2.5.1 Reducing Linux swappiness
2.5.2 Using Transparent Huge Pages
2.6 Critical parameters in configuration file

Base Quality Score Recalibration
3.1 Workflow and descriptions
3.2 Reads sampling
3.3 Score Recalibration and Convergence Test
3.4 Example pre and post recalibration results
3.5 Future Work

Read Alignment and On-the-fly Pileup
4.1 Workflow and descriptions
4.2  Per Base Information

4.2.1 Weighted Count

4.2.2 Strand Count

4.2.3 Soft Clip Count

4.2.4 Indel Count and Insertion Pattern
4.3 Space-efficient Data Structures
4.4 Temporary files

De-duplication
5.1 Workflow and descriptions
5.2 Duplicate identification
5.3  Future Work

Indel Realignment
6.1 Rationale
6.2 Workflow
6.3 Realignment Windows and Regions

6.3.1 Realignment windows and triggering conditions

6.3.1.1 Condition 1

O VWO XN NNNNNN oG

NN
_ oS O

I e N N
N W w w w NN NN

NN =
S S v \©

NN N NNDN
WNNR R R



6.3.1.2 Condition 2
6.3.1.3 Condition 3
6.3.1.4 Condition 4
6.3.1.5 Condition 5
6.3.1.6 Condition 6
6.3.1.7 Condition 7
6.3.1.8 Condition 8
6.3.2 Realignment regions
6.4 Indel Patterns Extraction
6.4.1 Alignment, IndelDB, DP with modified scoring matrix
6.5 DP with modified scoring matrix
6.6 Modified References with Indel patterns
6.7 DP alignment on modified reference
6.7.1 Selecting reads for realignment.
6.7.2 DP realignment
6.8 Best alignment Selection

SNAPSHOT

Variants Calling
8.1 Workflow
8.2 16-Genotype Model
8.3 Variant classification using Random Forest
8.3.1 Features used for model training
8.3.2 Features used for selecting “false sites”
8.3.3 Model training details
84 Output
8.4.1 Variant Calling Format (VCF)

Somatic Calling
9.1 Workflow
9.2 Problem Formulation
9.3 Algorithm for detecting difference between normal and tumor
9.4 Output

10 CNV

10.1 Workflow and description

10.2 Identify candidate segments

10.3 Merge overlapping or adjacent candidates

10.4 Adjust segment boundaries

10.5 Remerge adjacent segments with similar logratio
10.6 Performance Evaluation

10.7 Output

Datasets
1.1 YH 100bp and 150bp paired-end read dataset
1.2 Simulated 40x 100bp paired-end read dataset

23
23
23
24
24
24
24
24
25
25
26
26
27
27
27
28

30

32
32
32
34
35
35
35
36
36

37
37
37
38
39

40
40
41
41
42
42
43
44

45
45
45



2 Commands

2.1 The BALSA pipeline
2.1.1 From raw reads to variants
2.1.2  Filtration
2.1.3 Call somatic mutation
2.1.4 CallCNV
2.2 Running BWA
2.2.1 aln
2.2.2 mem
2.3 Running SOAP3-dp
2.4 Running the GATK pipeline and multiple (Ensemble) variant callers
2.4.1 Post-processing
2.4.2 Ensemble variant caller (Variant calling with 7 callers)
2421 Atlas2
2.4.2.2 GATK UnifiedGenotyper and HaplotypeCaller
2.4.2.3 Freebayes
2.4.2.4 Mutect
2.4.2.5 SAMtools genotype calling
2.4.2.6 VarScan genotype calling
2.4.3 Integrating variant results from 7 callers
2.4.3.1 SNP integration
2.4.3.2 Indel integration
2.5 The Isaac pipeline
2.6  Running Mutect for somatic mutations

47
47
47
48
49
50
50
50
51
51
51
51
52
52
52
53
53
53
53
53
53
54
54
54



1 Overview

1.1 Data Input
There are two types of input data - BALSA-required indices and short reads.

Indices include 1) a 2way-BWT index (for alignment), 2) dbSNP database (for base quality score
recalibration in section 3 and Random Forest based variant classification in section 8.3), 3) Indel
database (hereafter referred to as IndelDB, for realignment in section 0) and 4) optionally, Gene
region list (For realignment or using with exome sequencing mode).

dbSNP database and IndelDB contains known SNPs and Indel calls. The IndelDB can be 1000
Genomes and Mills Indel calls. A pre-processing tool will transform inputting VCF file into a binary
dbSNP database and a single binary IndelDB database for BALSA’s input (Details introduced in
Appendix 2.1).

Short reads are the short paired-end reads provided with the files in FASTQ format or BAM format.

In exome sequencing mode, Gene region list will limit modules including re-alignment and variant
calling to work only within the gene regions.

1.2 Data Output
BALSA supports variant output in both tab-delimited format and VCF format version 4.1. The VCF
format can be converted from the tab-delimited format using a script.

Optional output includes a SNAPSHOT (5 files) storing the pileup details from short reads for
downstream analysis. According to the specifications of the SNAPSHOT files introduced in section 7,
users can improve the algorithms in the variant calling, somatic mutation calling and CNV calling
modules introduced in this paper, or develop new algorithms to detect other types of mutations. A
documented API to facilitate users to get different types of information from the SNAPSHOT is our
future work.



1.3 Workflow

2-way BWT, dbSNP, Read Pair 1, Read Pair 2
Input Indell?B, . e .
Gene Region List Read Pair n-1, Read Pair n
First Batch of Reads
Base Quality Score Recalibration
Next Batch Al
of Reads SIE

De-Duplication

InDel Realignment SNAPSHOT

Variant Calling

[ SNP Indel Somatic Mutation CNVs ]




2 Resource Consumption

2.1 CPU

BALSA by default uses 6 cores of CPU. Experiments carried out in this paper, if not explicitly
mentioned, were using all 6 cores of an Intel® i7-3930k @3.2GHz with Hyper-Threading enabled.

2.2 GPU
BALSA has been tested to be fully compatible with the following Nvidia GPU acceleration devices:
* TeslaC2050,C2070,C2075
e Tesla K20c, K20m, K40c
* GeForce GTX580 (3.2GB), GTX680 (4GB), GTX780 (3GB), Titan (6GB)
*  Quadro 6000 (6GB)

In theory, BALSA should be able to work with any GPU device supporting CUDA computing
capability 2.0 or higher, with 3GB or more on-board graphic memory.

Experiments carried out in this paper were based on GTX680. The number of cores in the GPU
device is of essence to the performance of BALSA, but not necessarily pro rata.

2.3 RAM

For whole genome analyses of a 50-fold human sample, BALSA requires ~46GB of RAM at peak.
Extreme test on a 480-fold human genome dataset shows that BALSA costs ~57GB of RAM at peak.
A system with 64GB of RAM or more is recommended for running BALSA optimally.

2.4 10

As a ballpark figure, if there are X GBs of gzipped (compression level 5) FASTQ files with 100bp
paired-end reads for a human genome, BALSA roughly does the following:

* Reads X GBs of FASTQ files

* Reads 7 GB of 2-way BWT indexed reference
*  Writes 2X GBs of temporary data

* Reads X/15 GBs of temporary data

*  Writes 20 GBs SNAPSHOT data (optional)

BALSA was designed with good pipelining practice, which sufficiently overlaps the CPU time, GPU
time and IO time. Performance difference between using a recent 3T mechanical hard drive
(~140MB/s read and write) and two stripe-arrayed solid-state disk (~1TB/s read and write) is
unnoticeable. However, we do not suggest using BALSA with diskless workstations, where
temporary data have to be written to network attached storage, as it’s inefficient and the excessive
random accesses by modules such as realignment will add large pressure to the storage.

2.5 Tweak

2.5.1 Reducing Linux swappiness

BALSA is designed to take the full advantage of the hardware resources available on the processing
node. On systems with default Linux configuration, this causes the operating system to swap pages
out to make room for the 10 cache, when the BALSA gets to memory/IO intensive stages. Since



BALSA operates on data volumes that normally exceed the amount of RAM of an average system,
there is little or no benefit from 10-caching the data BALSA reads and writes.

Reducing the value /proc/sys/vim/swappiness to 10 or lower from the default 60 solves the problem.

2.5.2 Using Transparent Huge Pages

Huge pages can improve performance through reduced page faults (a single fault brings in a large
chunk of memory at once) and by reducing the cost of virtual to physical address translation (fewer
levels of page table to be traversed to get to the physical address). With the large memory footprint
and intensive localized memory access natures of BALSA, enabling Transparent Huge Pages feature
accelerates BALSA by 20% to 30%. Transparent Huge Pages is a feature enabled by default with
2.6.32 or newer kernels in RHEL or, 2.6.38 or newer kernels in Debian.

2.6 C(Critical parameters in configuration file
statMapqThreshold - Mapping quality score threshold. Reads mapped with mapping quality score
lower than the threshold would not be considered for pileup (updating the Counters).

statTrimSize - Size of trimming of alignment results. statTrimSize at the both edges of a aligned read
before soft-clipping would not be considered for pileup (updating the Counters).

statSoftClipThreshold - Only Soft Clipping with length = the threshold will be considered (updating
the SoftClipCounters).

BalanceSubError — “Balance Substitute Error” - the error rate of SNP, further defined as Ps in section
8.2.

UnbalanceSubError - “Unbalance Substitute Error” - the error rate of Indel, further defined as Pjp in
section 8.2.

RA_MaxBestPattern - Maximum number of candidate Indel patterns to test in a realignment region,
details in section 6.4.

RA_SupportThreshold - Minimum number of supporting reads for a candidate Indel pattern to be
valid for realignment, details in section 6.8.

Weight0, Weight1, Weight2, Weight3 - Bin ranges for transforming base qualities to weighted
counts, details in section 4.2.

IndelQualityThreshold - Averaged base quality threshold for dividing an Indel into high quality or
low quality, details in section 4.2.



3 Base Quality Score Recalibration

3.1 Workflow and descriptions

For each lane, the base quality score recalibration is to make the quality scores of each read to be
more accurate in that the reported quality score is closer to its actual probability of mismatching
the reference genome.

For example, a read could contain reported Q25 bases before recalibration, which seems good.
However, it may be that these bases actually mismatch the reference ata 1 in 100 rate, so are
actually Q20. These higher-than-empirical quality scores provide false confidence in the base calls.
Moreover, as is common with sequencing-by-synthesis machine, base mismatches with the
reference occur at the end of the reads more frequently than at the beginning.

To derive the empirical base quality score, we count the number of bases with a reported base
quality score and how often such bases mismatch the reference base, excluding loci known to vary
in the population, according to the dbSNP database.

Load 1M Read Pair (Skip First 1M Pairs)

Alignment

Loaded < 5M pairs

Load 1M Read Pair

Alignment

Store statistics for

. . Loaded = 5M pairs
Score Recalibration

Recalibrated Score Calculation

Aligned > 6M pairs Aligned = 5M pairs

Test Score Convergence

Converge Not Converge

Not Converge After 5 Tests

Report Problematic Dataset
3.2 Reads sampling

For each lane, before formal alignment, reads are sampled for alignment and the alignment results
are used for recalibration. To avoid possible bias, the first 1M pairs of reads are skipped and reads
are randomly picked afterwards at a rate of 0.25 until 1M pairs of reads are retrieved for alignment.
This process continues until the end of score recalibration.




3.3 Score Recalibration and Convergence Test
For each score i,i.e. 0 - 40, the number of mismatches and number of nucleotides will be accounted

m,
for each aligned reads. Recalibrated score O, will be calculated by Q, = -10log,,(—-), where m,
n.

]
and n; are the number of mismatches and number of nucleotides of base quality score i

respectively.

Recalibrated scores are calculated after every batch. The first 5M of alignments form the first batch;
second batch is the first 6M of alignment (extra 1M to the first batch) and so on. Convergence test is
carried out between the recalibrated scores of the current batch and the previous batch. It will
proceed to next phase if scores converge in not exceeding 5 convergence tests, otherwise, the
dataset will be considered as a problematic set.

Convergence test is defined as followed: let A and B to be the recalibrated scores from two
consecutive batches. 4 and B converge if d, <3 for Vi€[0,40] and Edi <5, whered, = |Al. - Bl.|.

3.4 Example pre and post recalibration results

The figure shows the base score recalibration of 8 lanes of 100bp paired-end reads of YH sample
sequenced using HiSeq 2000 TruSeq v2. The authenticity of the base qualities improved after
recalibration.

10



40

Baseline
35 Lane 1
Lane 2
Lane 3
30
Lane 4
= ‘
= Lane 5 SN
c=r 25 Lane 6
g Lane 7
c 20 —Lane 8
o
F=
e
=2
= 15
(&)
Q
[
10
5
0
0 5 10 15 20 25 30 35 40

Original base quality

3.5 Future Work

Our current design of the base quality score recalibration module considers only one dimension -
the original base quality score. Additional dimensions could be considered including, but not
limited to:

1. Sequencing cycles
2. Di-nucleotide context
3. Allele

Empirically, stochastic sequencing errors, where the error rate is coupled with sequencing cycles,
could be well recalibrated by just using the original base quality score. However, platform specific
systematic bias, such as the increased error rate of continuous G allele reported on I[llumina
sequencer, can only be well identified by using Di-nucleotide context and Allele. Incorporating these
two dimensions into the base quality score recalibration module is our future work. While in the
current design, we use at most 12M of reads to reach convergence, the increased dimensions, which
in turn requires additional training data to reach convergence, will increase the time consumption
dramatically. A gradual converging model that permits less accurate recalibration on the reads
loaded anteriorly could be a solution.

11



4 Read Alignment and On-the-fly Pileup

4.1 Workflow and descriptions

Different from the traditional workflows, where aligners output alignments results in files for the
subsequent pileup, BALSA maintains a space-efficient data structure in main memory for on-the-fly
pileup. The data structure is able to store per-base information including, 1) counts of alleles, 2)
counts of strands, 3) reduced base quality and mapping quality, 4) counts of soft-clipping, 5)
insertion/deletion types and patterns. The data structure handles vast majority of bases with fixed
size memory consumption. The bases with 1) excessive amount of alignments probably due to
repetitive sequence and 2) long inserted patterns, require small amount of additional memory to be
dynamically allocated at runtime. Albeit fixed size counters are already large enough to handle
sequencing depth up to 500-fold, every exceptional base that demands more memory will be
fulfilled. Empirically, with a scrupulous design on the data structure, the dynamically allocated
memory hardly exceeds 1/10 of the fix size memory consumed even for very deeply sequenced
samples. Notably, we do not compromise on the integrity of stored information that may directly or
indirectly lead to change of the variant calling results.

Load Read Pairs
Fixed-length bucket files

Alignment 5

l Exceptional

Base Info [t Hard Disk

All reads are processed

Exception Handling

Next

4.2 Per Base Information

4.2.1 Weighted Count

Each base in an aligned read comprises a recalibrated base quality, ranging from 0 to 40. To store
the quality of an aligned base, weights are applied to different ranges of quality scores as follows.
The ranges could be modified using parameters.

12



Base Quality Scores | Parameter* Weight
0-10 [0 - Weight0] 0
11-13 (Weight0 - Weight1] 1
14 -17 (Weightl - Weight2] 2
18- 20 (Weight2 - Weight3] 3
21-40 (Weight3 - 40] 4

*See section 2.6 for parameter list

Each aligned base contributes a count to the corresponding allele weighted by its recalibrated base
quality. For example, an aligned base ‘A’ with Q25 will add 4 to the “weighted count” counter of
allele A, while an aligned base with Q5 will add 0 to the counter.

4.2.2 Strand Count

According to the alignment result, each aligned base contributes one increment to the positive or
negative strand counter of the corresponding allele. Different from weighted count, the increment is
always one no matter what recalibrated base quality it has. For example, for a base covered by
multiple reads where the recalibrated base qualities are all below 10, the sum of weighted counts
could be 0, while the sum of strand counts of both strands exactly reflects the number of reads
aligned. Soft-clipping, insertion and deletion are recorded elsewhere and will not contribute count
to either weighted counter or strand counter.

4.2.3 Soft Clip Count

Soft-clipping count will be stored if it exists in an alignment result, i.e. ‘nS’ in CIGAR string, while n is
the length of the clipping and longer than a threshold set by a parameter. Direction of the clipping
will also be kept such that the count of head clipping and tail clipping can be distinguished
(explained in details in section 4.3).

4.2.4 Indel Count and Insertion Pattern

Indel information will be stored if it exists in an alignment result, i.e. ‘ml’ or ‘nD’ in CIGAR string,
where m and n are the length of the insertion and deletion, respectively. Besides the counts of
different insertion and deletion types at a base, the patterns of the insertions are also stored in a
dynamically allocated data structure (explained in details in section 4.3).

For each type, high quality or low quality support, which is determined by the average recalibrated
base quality (Q14 by default, set by parameter) of the inserted or deleted pattern, are recorded into
two counters respectively.

4.3 Space-efficient Data Structures

Human genome is about 3G base-pairs in size. Amortized X bytes consumption for each base will
simply lead to 3XG memory consumption. To realize on-the-fly pileup, space-efficient data
structures were designed with principles including: 1) multiplexing, where a space serves multiple
non-overlapping purposes; 2) space utilization is of great essence; 3) minimize overall memory
transactions for possible usages; 4) minimize redirections between structures; 5) empirically
maintain the ratio of “exceptional bases that require dynamic memory allocation” to “bases that are
capable to be handled by fixed size counters” in a range.

13



Firstly, based on the diploid genome assumption, each genome position ideally have exactly one
(vast majority) or two alleles. Counter, an 8-byte data structure is designed to store the information
including 1) allele type; 2) weighted count; 3) positive strand count and 4) negative strand count of
no more than two alleles, each using 4 bytes.

Counter (8 bytes)

r 1 Base 1 Information Base 2 Information Br = =========z==== ]
|
: 4 bytes 4 bytes :
1 |
'—>‘ base weighted count +ve strand count | -ve strand count ‘ :
|
2 bits 14 bits 1 byte 1 byte !
|
‘ base 1 weighted count +ve strand count | -ve strand count |<-'

2 bits 14 bits 1 byte 1 byte

Base stores the allele A, C, G or T, represented by “00”, “01”, “10” and “11”, respectively. Weighted
count stores the weighted sum of allele A, C, G, or T. Strand count of both positive and negative
strands store the total count of allele A, C, G, or T. The maximum value of each strand counter at this
level is bounded to 255.

There are a relatively small number of genome positions (empirically, ~100-200M) that 1) involve
3 to 4 aligned alleles or 2) Indels suggested by alignments. These are regarded as exceptional
genome positions. To handle these genome positions, OverflowCounter, a 32-byte data structure, is
used. Since the existence of these exceptional genome positions are not known in advance, we
cannot pre-allocate memory for them; instead, a dynamic array is employed.

14



OverflowCounter (32 bytes)

= Base A Information = Base C Information @ Base G Information | Base T Information

6 bytes 6 bytes 6 bytes 6 bytes

4 bytes 4 bytes

.
I
I
]
]
--fq Insertion Info. = Deletion Info. m============--==-—=x
|
|
I
I

weighted count +ve strand count -ve strand count

2 byte 2 byte 2 byte

== Insertion Pattern LQ count
3 byte 1 byte
Del. Len. | HQcount | LQcount | Unused K~=========-~-
1 byte 1 byte 1 byte 1 byte

When OverflowCounter is used for a genome position, the original 8-byte counter will be
transformed to store: 1) the array index pointing to the dynamic array of OverflowCounter,2 2)
some insertion details including 2) its length and 3) its high quality count.

‘ basel weighted count +ve strand count | -ve strand count ‘
| base2 weighted count +ve strand count | -ve strand count ‘
| 11 Insertion Information array index pointing to dynamic
| 11 4} Deletion Information array of overflow counter
n
4 bits:l 28 bits 4 byte
T
le=======4 | 0 | Ins. Len. HQcount |

Has insertion | 1 bit1bit 4 bits 8 bits

________ | 0 | Unused |

% bit 1 b 12 b

[t is not uncommon that 1) more than 1 type of insertions or deletions are suggested by alignments

at a genome position, or 2) the inserted pattern is longer than 12 bases (3 bytes), where the Counter
together with the OverflowCounter will be considered insufficient. A “Memory Pool”, where allows
arbitrary amount of memory to be allocated for a genome position, is then introduced to handle all
remaining circumstances.

15



OverflowCounter (32 bytes)

—= Base A Information = Base C Information ' Base G Information | Base T Information

1
: 6 bytes 6 bytes 6 bytes 6 bytes
1
T f = Insertion Ptr. | DeletionPtr. m==============-=---
1
- 4 bytes 4 bytes
1

1
->{ weighted count | +ve strand count | -ve strand count

Memory Pool (max. 4G)

« — =3 [Insertion length] [Insertion pattern] [HQ count] [LQ count] ...

1
1
1
1
1
]
1
2 byte 2 byte 2 byte :
1
1
]
1
1
1

[Deletion length] [HQ count] [LQ count] ... € = === ====== -
basel weighted count +ve strand count | -ve strand count
base2 weighted count +ve strand count | -ve strand count
11 - Insertion Information array index pointing to dynamic
11 1 Deletion Information array of overflow counter
4l
4 bits:l 28 bits 4 byte
T
:'- ———————— >{ 1 } 1 l Array size in Mem. Pool |
- 1 bit 1 bit 12 bits
1
1
b *{ 1 | 1 J\\ Array size in Mem. Pool |

1 bit 1 bit \ 12 bits

| Indicate the use of Mem. Pool |

The utilization of a program maintained memory pool enables the use of 32-bit memory pointer,
which could be effectively stored by reusing the spaces in OverflowCounter. The locality of its data
also allows faster memory transaction and on-demand garbage collection. The maximum size of the
memory pool is 4G. Although we cannot predict the number of Indels to be stored in the memory
pool before running BALSA, and it is not uncommon that, the low quality of the sequencing data or
the high heterozygosity of the sample will contribute a high prevalence of Indel signals in
alignments. In our experiments, we found that, the utilization of memory pool will hardly exceed 1G
even with low quality 150bp short pair-end reads.

16



Empirically, soft-clipping happens at a small portion of genomic positions, hence it is not necessary
to maintain a one-slot-one-position structure to store soft-clipping details. Positions with soft-
clipping will be recorded in the format of {position, left count, right count} in a dynamic array,
where left and right count refer to the count of soft-clipping at 5’ and 3’-end of the alignments
regarding to the positive strand of the reference. The dynamic array is in genome position sorted

order.
5500 3 0
150000 1
350000 3 1

Soft Clip Counter
{position, left counts, right counts}
[12 bytes each]

There are two situations that the data structures are unable to hold the information of a genome
position, including 1) one or more counts are too large to be held by OverflowCounter (>65,535) or
SoftClipCounter; 2) the reference allele is ‘N’. These genome positions are considered to be invalid
thus being marked in a bit vector. BALSA by default excludes these genome positions in variant
calling.

4.4 Temporary files
Efficiently storing the intermediate alignment results, which enables fast and random access to the
results, is essential for efficiency of the de-duplication and realignment modules introduced later.

For every aligned single-end read or read-pair, we divide the information to be stored into two tiers
according to their frequency to be accessed. The alignment information that will be accessed in
both de-duplication and realignment modules are “Read ID”, “aligned genome position”, “aligned
insert size” (for paired-end mapping only), “mapping quality” and “average base quality of the
whole read”, together composing the tier 1 intermediate file. The information that will be access
only in realignment module are “read length”, “read bases”, “per base qualities” and “DP alignment
details”, together composing the tier 2 intermediate file. The “Read ID” of tier 1 is the index of tier 2.
After the alignment, the tier 1 intermediate file will be sorted by “aligned genome position”, hence
obtaining a bunch of “Read ID” in a range of genome position can be done by binary searching on
the sorted tier 1 intermediate file. For de-duplication, every alignment result in tier 1 will be
sequentially visited, while for realignment module, only reads in identified realignment windows

(details in Section 0) will be accessed in both tier 1 sequentially and tier 2 randomly.

17



PairEndAlignmentinfo SingleEndAlignmentinfo

Read ID 4 bytes Read ID 4 bytes
Aligned Position QY EE Aligned Position [EEEQY(ES
Insert Size 2 bytes MAPQ 1 byte

MAPQ 1 byte Average Base

Quality 1 byte

Average Base

Quality 1 byte

Intermediate Files:
# of ekntries

[ |
# of entries (4 bytes) PairEndInfo PairEndInfo
# of entries (4 bytes) SingleEndInfo SingleEndInfo

Read Length Packed Read Base Qualities

2 bytes Words Per Read x 4 bytes Max. Read Length x 1 byte

4 bytes 2 bytes 4 bytes 4 bytes

DP Start Pos. Left Anchor Right Anchor

Strand (1 bit)

DP ref. length
(15 bit)

The nature of accessing the data in tier 2 is highly random. Thus by default, we create 512 files
(buckets) for tier 2. Read alignments are distributed to one of these 512 files. This enables the
operating system to have better queuing on accessing the files.

18



5 De-duplication

5.1 Workflow and descriptions

Duplicately sequenced molecules shouldn’t be counted as additional evidence for or against a
putative variant. Reads identified to be duplicates should be removed in advance to realignment
and variant calling. In BALSA, de-duplication operates on per lane level at the current stage, and
will be extend to be able to operate on per library level in the future.

Identify duplicated single-end alignments
from paired-end alignments

Identify duplicated paired-end alignments S

Identify duplicated single-end alighments SEEEEEEIEEE :

Bucket ID
Bucket Offset

Bucket Info

Load Read Pair
based on Bucket Info

Alignment

Update Per Base Info

19



5.2 Duplicate identification

paired-end alignment
Genome Reference

Higher MAPQ |

= Duplicates

-—— - ——

L Not
Duplicates

T
1
!
1
!
I
I
l
single-end alignment 1 |
|
|
I
I
I
)
!
I
|
l
I
1
|
I
1

Each paired-end read alignment has two starting positions (each single-end alignment has one
starting position). For reads aligned as single-end (not properly paired), 1) if a single-end alignment
has the same starting point to another paired-end alignment (any of two), the former will be
considered as a duplicate for removal; 2) if a single-end alignment has the same starting point to
another single-end alignment, the one with lower mapping quality score will be considered as a
duplicate for removal.

For reads aligned as pair-end (properly paired), if two paired-end alignments have exactly the same
starting positions, the pair with lower mapping quality score will be considered as a duplicate for
removal. Denote that a paired-end alignment has two mapping quality scores; the lower one will be
used for comparison.

Counters will be updated with the counts previously contributed by the duplicates removed. Since
the CIGAR strings for the alignments are not stored in the temporary files, alignment of the
duplicates is performed with banded DP starting from the aligned genome position to regenerate
CIGAR strings for Counters update.

5.3 Future Work

There are two types of duplications: 1) molecular duplicates due to PCR artifact, which is the
majority and 2) specifically for [llumina’s SBS sequencing, optical duplicates due to clusters very
close to each other on a flowcell. The optical duplicates could be detected by identify identical reads
with small distant to each other on a flowcell.

20



6 Indel Realignment

6.1 Rationale

The local realignment tool is designed to locally examine and realign reads such that 1) the number
of mismatching bases is minimized and 2) the number of Indel patterns and combinations that
could be derived is minimized across all reads. In general, a large percentage of regions requiring
local realignment are due to the presence of one or several insertions or deletions in the sample’s
genome with respect to the reference genome. Such alignment artifacts result in excessive bases
mismatching the reference within the misalignment, which may eventually be mistaken as variants.
Moreover, since the read mapping algorithms operate on each read independently, it is impossible
to place reads on the reference genome locally optimized such that they fulfill the two requirements
mentioned during alignment. Consequently, even when some reads are correctly mapped with
Indels, reads covering Indels within two edges of the read are often incorrectly mapped with
respect to the true Indels, requiring realignment. Local realignment serves to transform regions
with misalignments due to the existence of one or more de facto Indels into clean read alignments
that reveals these Indels.

6.2 Workflow

@ Identify realignment (RA) regions
Load reads within RA regions

Alignment DP with different scoring matrix

Extract InDel Patterns
DP with InDel Patterns

Select realignment results

Update Per Base Info

21



6.3 Realignment Windows and Regions

To determine the reads that need to be realigned, we identify realignment regions on the genome
where the aligned reads are not piled up with variant signals in a sufficiently consistent way.
Roughly speaking, a realignment region is composed of a number of consecutive fixed-size
realignment windows, in which some bases show alignment inconsistency, e.g., 30% of the aligned
reads indicate mismatch at a position while the other 70% of the reads indicate an insertion.

6.3.1 Realignment windows and triggering conditions

Let Wiz be the window size, which is half of the read length, rounded up to the nearest even integer;
e.g., for 150 bp reads, W;i,.=76 bp. Each chromosome of the genome is covered by overlapping
windows of size Wii,e, where the first window starts at the 2 Wi, first position of a chromosome,

and consecutive windows are distant apart by a size of (Wsi,./2) bp. Below we consider a particular
window W.

Before defining a realignment window, we need some notations, which are derived from the per-
base information within W. For each position p in the window W,

e  DEL(p) is the number of deletions covering position p. Here, if a deletion spans from position i
to j, then the deletion covers position i to position j, and thus contributes 1 increment to DEL(i),
DEL(i+1), ..., DEL()).

e INDEL(p) is the sum of DEL(p) and the number of insertions between position p-1 and p.
StrandCount(p) is the number of matches/mismatches (i.e., total strand count) at position p.

e  ReadCount(p) is the sum of DEL(p) and StrandCount(p), which equals to the number of reads
aligned over position p.

Furthermore, we need the notion of a “mismatch base” and an “indel type”, and their “support”.
Consider a position p, a mismatch base is a base aligned to position p that is different with the base
on the reference genome, and its support is the number of reads having that mismatch base aligned
to position p. An indel type is an insertion type (with the same insertion position and the same
inserted pattern) or deletion type (with the same starting position and the same deletion length),
and its support is the number of reads whose alignment has that Indel type.

With the above notion, we can define the following notations for a position p in the window W:

e  MismatchType(p) is the number of mismatch bases at a position p whose support is at least 2
and also at least 25% of the StrandCount(p).

e IndelType:2(p) is the number of insertion types between position p-1 and p and the deletion
types covering position p whose support is at least 2.

e IndelTypeAt(p) is the number of indel types (i.e., insertions between position p and p-1 and
deletions starting at position p) whose support is at least 2, if StrandCount(p) is at least 1;
otherwise, IndelTypeAt(p) = 0.

Furthermore, we can define MismatchType(W) and IndelType(W) for a window W, as follows:

MismatchType(W) = ;MismatchT ype(p) and IndelType(W) = ;IndelT ype(p)

22



We also take the soft-clipping information into account. A soft-clipping signal is a soft-clipping in
the alignment of a read, and the position of this signal is the position p if the soft-clipping clips the
5’-end a read and the first unclipped base of that read is aligned to position p, or the soft-clipping
clips the 3’-end of a read and the last unclipped base of that read is aligned to position p. Then, we
define a count SoftClip(p) which counts the number of soft-clipping signals at position p.

Based on the above per-base information within W, the window W is a realignment window if it
satisfies one of the realignment conditions below:

6.3.1.1 Condition 1
(MismatchType(W) = 1) AND (IndelType(W) = 1) AND (MismatchType(W) 2 2 * IndelType(W)).

Intuitively, multiple mismatch bases and multiple Indel types supported by aligned read in a window,
and mismatch bases are two times the Indel types.

6.3.1.2 Condition 2
There exists a position p in W where IndelTypes2(p) = 2.

Intuitively, two or more Indel types supported by two or more reads exist at a position in a window.

6.3.1.3 Condition 3
(IndelType(W) = 2) AND (There exists a position p in W where INDEL(p) = 25% of ReadCount(p)
AND StrandCount (p) = 1).

Intuitively, two or more Indel types exist in a window and at least a position p satisfies 1) 225% of
aligned reads support an Indel type and 2) at least a read aligned with a match or mismatch.

6.3.1.4 Condition 4
Let MaxDelLen(p) be the maximum deletion length among all deletion types starting at position p.
For any integer k = 0, let

p+mac(0,MaxDelLen( p)-1)+k
SUM (p,k) = INDEL(p) + E Soficlip(q)

q=p-k
Then, the condition is that: there exists a position p in W where,

INDEL(p) = 1 AND StrandCount(p) =1 AND [ (SUM(p, 0) =2 15% of ReadCount(p)) OR (SUM(p, 1) =
30% of ReadCount(p)) OR (SUM(p, 2) = 45% of ReadCount(p)) OR (SUM(p, 3) = 55% of
ReadCount(p)) OR (SUM(p, 4) = 75% of ReadCount(p)) ].

This condition is based on the observation that a long Indel exist at the edges of a read will very
likely lead to an alignment of the read with soft-clipping at or near the boundary of the indel.
Intuitively, the condition considers the excessive amount of soft-clipping signals flanking a putative
Indel signal at a position p in a window.

23



6.3.1.5 Condition 5

There exists a position p in W such that there is an insertion type between position p-1 and p OR
deletion type starting at position p, which exists in IndelDB and whose support is at least Support(x),
where x is the length of that indel, and Support(i) =5 -ifori=1, 2, 3, 4, and Support(j) = 1 forj = 5.

Intuitively, this condition is analogous to GATK IndelRealigner’s ‘KNOWNS_ONLY’ consensus
determination model. If sufficient amount of the alignments in a window could be realigned to
support a known Indel from IndelDB, the Indel is very likely to be correct.

6.3.1.6 Condition 6
This condition considers the long known Indels from IndelDB only. The condition is: there exists a
position p in W such that IndelDB contains an Indel type with length greater than 20.

Although BALSA was designed to be skillful in detecting long Indels, the sensitivity may still
decrease with the increasing length of an Indel. Intuitively, if IndelDB contains a long indel within a
window, no matter if there exists any read supporting the Indel or not, the Indel would be
considered as an Indel type for realignment.

6.3.1.7 Condition 7
This condition considers only the soft-clipping signals. The condition is: there exists a position p in
W with at least 2 soft-clipping, which are at least 25bp in length.

Long soft-clipping is rare, thus, intuitively, we consider two or more long soft-clippings at the same
position in a window as a putative signal of Indel. This condition is by default switched off and
works in conjunction with modified DP scoring matrix introduced later in section 6.5.

6.3.1.8 Condition 8

This condition considers all the known Indels from IndelDB. The condition is: there exists a position
p in W such that IndelDB contains a known Indel at p. This condition is by default switched off.
Notices that this is a very wild condition that schedules realignments to all Indel provided by
IndelDB. In real analyses, providing sufficient depth, it is not uncommon ones failing to have even 1
correct alignment indicating an authentic Indel signal in a genome region of following types: 1)
polymer run, 2) low complexity regions such as TATA boxes, 3) interspersed repetitive sequences
such as SINE and LINE. However, providing an accurate and abundant IndelDB, these blind Indels
may be able to be rescued by a thorough attempt through all known Indels, while IndelDB contains
known Indels detected by various methods, including variants detected by longer sequencing reads
such as Sanger and PacBio, which is supposed to be more accurate.

6.3.2 Realignmentregions

We construct realignment regions for each chromosome, as follows: Suppose the chromosome
contains identified realignment windows Wj, Wo, ..., Wy, in ascending order of their starting
positions. We look for the first window W;, which is not yet considered. Then, we set it as the first
window of a new realignment region. This realignment region is further extended in the following
iterative manner to have a size of at most 10 times of Wii,.. Suppose Wi.x is the last window merged
into the current realignment region.

24



Step 1: If Wiy is a realignment window for some integer y in [1, 2], extend the region up to Wiy
inclusively for the smallest such y.

Step 2: Otherwise, if there exists a deletion starting within Wj.x and ending within Vj.x:2, where Vis a
window not matching any condition for realignment (the ending position of Wi, is right next to the
beginning position of Vi.x.2), extend the region up to Vi.x.2 inclusively.

Step 3: Otherwise, if Wiy, is a realignment window for some integer y in [3, 6], extend the region
up to Wiy inclusively for the smallest such y.

Intuitively, 1) windows not more than 3 read length (6 windows) away will be merged; 2) two
windows with a deletion crossing the boundary will be merged.

m( Windosz Window4]

Genome r \ Y l Y J )

L Window 1 l Window3l Window 5 J

~ Tl

x bp

Once a realignment region has a size greater than 10 times of Wi, this realignment window is most
likely in repetitive regions of the genome, thus ignored from realignment by default. Noted that
Step 3 guarantees that two consecutive realignment regions are separated by at least the length of
one read length.

Maintaining a list of realignment regions. We maintain a list of all the realignment regions for all
the chromosomes, and we also maintain a condition flag for each realignment region, which
indicates the conditions satisfied by any one of the realignment windows within the realignment
region. This flag will be used in later steps to determine whether further processing, e.g., dynamic
programming with modified scoring function, is needed.

6.4 Indel Patterns Extraction

An Indel pattern for a realignment region is a candidate sequence (with inserted and deleted bases
with respect to the reference) to be realigned with (see below for precise definition). We form a set
of Indel patterns for each realignment region from three sources, namely, 1) BALSA alignment, 2)
the Indel database IndelDB, and 3) dynamic programming (DP) with modified scoring matrix. We
only consider non-duplicated alignments covering a realignment region. Eventually, realignment
results covering a realignment region must be restricted to follow any one of these Indel patterns,
including the original reference as one of the candidate Indel pattern.

6.4.1 Alignment, IndelDB, DP with modified scoring matrix

Indel patterns are extracted from three sources - Alignment, IndelDB and DP with modified scoring
matrix. Noted that BALSA does not maintain the CIGAR strings of the alignments in temporary files;
we need to reproduce the alignments so as to extract the Indel patterns for the realignment regions.

25



Indel patterns from alignments. For each read pair, if one of its reads is paired up to a
realignment region, we align it to re-obtain the CIGAR strings of its alignment. Indel pattern are
generated from the CIGAR strings, which contains the possible combinations of insertion, deletion
and matching. Then, we store at most x Indel patterns with the greatest average indel length, where
x is a user-specified parameter for the tradeoff of realignment efficiency and accuracy.

Indel pattern from IndelDB. Within any realignment region, if IndelDB contains any known long
Indel (length of at least 20bp), we form an Indel pattern containing only that long indel. If there are
x such long indels, we store all the corresponding x Indel patterns and do not restrict the total
number of them.

Indel pattern from DP with modified scoring matrix. As we will see in section 6.5, for some
realignment regions, we will realign the reads paired up with them using a DP with modified
scoring matrix favoring Indels over mismatches. By default, only DP alignment results with exactly
one long indel (length of at least 20bp) will form an Indel pattern. Notably, we are very conservative
on using the Indel patterns derived from DP with modified scoring matrix base on the observation
that it’s a double-edged sword, which is able to reveal the correct Indel pattern when default
scoring matrix cannot, but will also spawn lots of spurious patterns due to its mercy on Indels. In
addition, for each realignment region, we keep only one Indel pattern with the longest indel length.

6.5 DP with modified scoring matrix

Recall the condition 7 in section 6.3.1.7 that triggers a realignment window. Even without a single
alignment support, recurrent soft-clipping signals may infer a putative Indel signal. This deviation
is caused by the scoring matrix used by the dynamic programming module. By default, BALSA uses
1,-2,-3,-1 and 0 (positive score for credit, negative score for penalty) for match, mismatch, gap-
opening, gap-extension and soft-clipping, respectively. The higher gap-opening penalty along with
the lower mismatch and soft-clipping penalties promote alignments with mismatches over Indels.
The default scoring matrix is empirically verified to achieve a best balance between sensitivity and
accuracy in human genome. However, in the realignments triggered by condition 7, with the
assumption that the deviation is very likely to be trigged by a long Indel, all related reads were
realigned using a new scoring matrix 1, 7, 1, 1 and 0, in which the penalty to mismatch is way larger
than Indel. This eventually enables the long Indel to be rescued for variant calling.

We only consider realignment regions, which has a realignment window satisfying condition 7, and
which does not have any know long Indel from IndelDB. Then, we align each read aligned to the
realignment region using DP with modified scoring matrix. Recall that only DP alignment results
with a single long indel (length of at least 20bp) are used to form an Indel pattern.

6.6 Modified References with Indel patterns

After the extraction of Indel patterns, original reference is modified according to the patterns and
forms a set of modified references. Modified reference is a reference with the deletion removed and
insertion added. We expect that, if a modified reference is exactly what the sample is (the deletions
and insertions are authentic), the reads would be realigned unambiguously without Indel to the
modified reference. However, if a modified reference is derived from inauthentic deletions and

26



insertions from incorrect alignments, the reads won'’t agree to the modified reference and would be
realigned inconsistently. That is, simply stated, “there are thousands of rumors but only one truth”.

Original reference

| —

Deletion

Modified reference

| —

6.7 DP alignment on modified reference

6.7.1 Selecting reads for realignment.

For a realignment region, we realign reads, which is non-duplicate and whose alignment overlaps
the realignment region by at least one base. It is possible that, for a read not overlapping a
realignment region, will fall in the region after realignment with deletion on reference, thus we
extended the beginning of each realignment region by 1.5 time a read length by default. Note that
all extended realignment regions are disjoint, as it is guaranteed in section 6.3 that the gap size
between two consecutive realignment regions is at least a read length, otherwise, the two extended
realignment regions will be merged. Reads will be retrieved from temporary files and pair up with
their corresponding realignment region.

Realignment Region

Modified reference

1
|

-
-

1.5 read length 1.5 read length

6.7.2 DP realignment
The DP realignment results of each read onto each of the modified reference are saved and we will
select the best realignment in section 6.8.

Due to the utilization of GPU for alignment, the time consumption of the DP module was bounded
by the maximum length among all modified references. We observe that most of the DP instances
are with the length of the modified reference much smaller than the maximum length. Therefore,
we speed up the DP module by dividing the DP instances into at most four groups, each group will

27



have modified references similar in length.

Original reference

|

|

| ﬁ Deletion! I

Iﬁ Some Mismatch! ]

<> | |

| ﬁ Some Mismatch! ]

|

Modified reference

\ = AllMaten! |

| = Almatent |

| ﬁ All Match! |

- 1111

6.8 Bestalignment Selection

We need to vote for a best-modified reference by looking at the realignment results in each
realignment region. The selection is divided into the two phases as follows:

| ﬁ All Match! |
| :l All Match! I
\

Phase 1: We keep a counter Vote(m;) for the ith modified reference m; of a realignment region. Let R

be the realignment results from the modified reference region m;. For each read associated with the

realignment region, suppose the DP alignment result R; of it over modified reference m; has the
maximum DP score among other results over other modified reference mj, where j # i. If this

maximum DP score is strictly greater than its original DP score in Rorg, increase Vote(m;) by 1. A DP

alignment will contribute to multiple modified references if they have the same maximum DP

scores.
m, m, m, m, Mg
\Vote +1 +1 +1
DP score 127 135 130 135 135 132
for a read
Rorig Rl RZ R3 R4 RS

28



Phase 2: Recall that in the array of modified references, each modified reference has a count
Countorig(m;), which is the number of the original alignments in that realignment region supporting
the modified reference m;. Let T be a user-specified threshold (by default 3). We only consider
modified references from m; where Vote(m;) - Countorig(m;) = T. Such m; is said to have enough
support and can attract enough reads to follow its Indel pattern. For each read associated with the
realignment region, we select one best alignment result for Counter update as follows:

Consider all valid DP results R, where its corresponding m; is passing the threshold T, and its
original alignment Rorig. For a DP alignment from R; with the maximum DP score, if the maximum DP
score is strictly greater than its original DP score in R,y we select the DP alignment from R,,
otherwise, we keep original DP alignment in R,y and no update is needed for such read. If two DP
alignments in R shares a same maximum DP score that higher than R,y we select the first one in
array context.

29



7 SNAPSHOT

A Snapshot is a dump of all data structures that BALSA needs to work with. A Snapshot after
alignment, recalibration and realignment can be considered as a pileup form of all the information
from the inputting raw reads. All downstream analyses are designed to be able to start directly
from a Snapshot or multiple Snapshots. Specifically, the five data structures to be stored are (for the
details of what information each data structure stores, please refer to section 4.3):

e Counter

* OverflowCounter

* MemoryPool

* SoftClipCounter

* [Invalid Position bit vector

Remarks:

Counter - subject to the selection of “Whole Genome Sequencing” or “Exome Sequencing” mode,
there are two ways of storing the Counter. For “Whole Genome Sequencing” mode, Counter will
sequentially store the details of every genome position. For “Exome Sequencing” mode, only [x-100,
y+100], where x and y are the starts and ends of the specified exome regions, will be stored.

OverflowCounter - including n dynamic arrays to store the details of positions where Counter is
insufficient, where n is the number CPU threads used set by user in the configuration (ini) file.

SoftClipCounter - Sorted by genome position order.

Invalid Position bit vector - If the bit of a genome position is set to 1, the position is considered to be
invalid.

30



Mode (1 byte) Length (4 bytes)

Counters (Length * 8 bytes) } Mode =
WGS
Position (4 bytes) Counter (8 bytes) [l Position (4 bytes)  Counter (8 bytes) } Mode =
WES
OverflowCounter
Number of threads (4 bytes)
Dynamic array size (4 bytes) Dynamic array capacity (4 bytes)
Per thread

Overflow Counters (size* 32 bytes)

MemoryPool (Max. 4G)

End pointer (4 bytes) Pool capacity (4 bytes)

Pool content ((End pointer - 1) * 1 byte)

SoftClipCounter

# of counters (4 bytes)

Counter (# of counters* 12 bytes)

Invalid Position bit vector

]
The bit vector contains |reference genome| bits.

31



8 Variants Calling

8.1 Workflow

After score recalibration, alignment, de-duplication and realignment, the consequent SNAPSHOT
comprises the aggregated details of base and alignment quality, strand, allele type and count,
variant patterns and soft clipping for each site, is used for variant calling.

8.2 16-Genotype Model

The genotyping model assumes that the sample is a diploid individual, thus the model’s statistical
space is the set of un-phased diploid genotypes,
G={AA,AC,AG,AT,CC,CG,CT,GG,GT,TT,AX,CX,GX,TX,XX,XY}, where X and Y are the inserted or deleted
allele at a site with the highest and second highest depth (i.e. aligned read support), respectively.
Different from the traditional 10 genotypes model, which got its prevalence in GATK
UnifiedGenotyper, SOAPsnp and other callers, we use a 16-genotypes model, which incorporates
both A,C,G,T and Indel alleles. The new model was not only designed to facilitate computation but
also dramatically improved the sensitivity and accuracy of variant calling. 5 genotypes
{AY,CY,GY,TY,YY}, which implicate an authentic Indel allele with depth lower than the depth of an
error Indel allele, were excluded from the diploid combinations of {A,C,G,T,X,Y}. Empirically, these
genotypes rarely exist after realignment.

Posterior probabilities of these the 16 genotypes were calculated using a Bayesian model,

P(G|F)x P(F1G)P(G)

..where F refers to the observed weighted count of 6 bases at a site in Counter, P(G), is the prior
genotype expectation, P(F|G) expresses the likelihood of the observations and P(G|F) is the
posterior probability over genotypes.

There are at least a few reasons you might observe a base call that does not match the reference at a
given location: 1) a bad base call during sequencing or primary analysis, 2) a bad alignment
resolution of multiple possible alignments, or 3) a genuine variant allele. Because the recalibrated
base quality score only help resolve the first cause of error, we specify both error probabilities Ps
for ACGT allele (balanced error) and Py for Indel allele (unbalanced error). The reason we set two
error rates is because of the default scoring matrix applied in the dynamic programming module in
alignment and realignment favors balanced error (mismatches) over unbalanced error (Indels).
Thus empirically, a Ps should be set higher than Pip.

If an error occurred (caused by base calling or alignment), assume 1) each of the {A,C,G,T} allele is
equal likely to be observed with probability Ps(including the fact alleles), and 2) each of the {X,Y}
allele is equal likely to be observed with probability Pip (including the fact alleles),. We define

P, =mP +nP,

err

..where m is the number of {A,C,G,T} alleles in the expected genotype G; n is the number of {X,Y}
alleles in G. The default error probabilities used are

32



P, =001
P, =0.005

When observing a homozygous genotype, we would expect to observe nearly 100% of the
homozygous allele. When the allele frequencies of a heterozygous genotype are examined, we
expect to observe nearly 50% for each allele. The observed allele frequencies may deviate slightly
from the ideal due to call and alignment errors. To test how well an observed depth fits with the
expected depth, we used two-tailed Fisher’s Exact Test (FET) with formula defined as below, and
take the resulting p-value as the probability of an expected genotype G.

pl @ b | (a+b)l(c+d)(a+c)(b+d)!
c d (a+b+c+d)a'b!c'd!

Examples of calculating expected genotype probability P(F|G) are given as follows:

The likelihood of a homozygous genotype G=AA given observed weighted counts F = {F, F¢, F¢, Fr,
Fx, Fy} from a site in Counter can be expressed as:

P(F1AA,P,)=P,

err

(FA)'PE(FcaF(;aFT’anFy)

om

The likelihood of a heterozygous genotype G=CG given observed weighted counts F = {Fy, F¢, F¢, Fr,
Fx, Fy} can be expressed as:

P(FICG,P,) =P, (F..F,) P.(F,,F,,F,,F,)

...where,
Promis the probability of observing the allele matching a homozygous genotype,

F, F
F-(1-P.) F

err

Phom (FA) = P
Pre: is the average of the probabilities of observing each of the two alleles of a heterozygous
genotype,

1 F, F
PulFere) =3 2, P F-(05-P,) F

i=C,G err
P.is the probability of observing all alleles otherwise exist in the expected genotype G,

P(F..F..F..F.)= P F,+F.+F,+F, F
e Astrot xsty/) ™ FP F

err

33



Given 1) the expected rate 0 of single nucleotide differences between two unrelated haplotypes, 2)
the expected rate w of single Indel differences between two unrelated haplotypes and 3) the
expected transition to transversion ratio (Ti/Tv) & where transition is expected to occur more
frequently in real organics, the genotype categories used to describe the model’s prior distributions
are as follows:

Expected genotype when Prior
reference allele is'A'  |Count| probability Category Desciptions

AA 1 1 homRef Homozygous reference
GG 1 0/2*¢ homTiMut |Homozygous non-reference transition allele

CC,TT 2 0/2 homTvMut [Homozygous non-reference transversion allele
AG 1 O*e hetTiRef  |Heterozygous genotype w/ reference w/ transition allele

AC,AT 2 [¢] hetTvRef |Heterozygous genotype w/ reference w/ transversion allele

CG,GT 2 (012)/2*e hetTiTvMut |Heterozygous genotype w/o reference w/ a transition and a transversion allele
CcT 1 (672)/2 hetTvTvMut |Heterozygous genotype w/o reference w/ two identical transversion alleles
AX 1 w hetReflD  [Heterozygous genotype w/ reference w/a Indel
GX 1 w*B/2*e hetTiMutID |[Heterozygous genotype w/o reference w/ a Indel and a transition allele

CX,TX 2 w*6/2 hetTvMutID |Heterozygous genotype w/o reference w/ a Indel and a transversion allele
XX 1 w/2 homMutID [Homozygous non-reference Indel
XY 1 (wn2)/2 hetMutID |Heterozygous genotype w/o reference w/ two identical Indels

The default expected rates used are

6=0.001
w =0.0001
e=2.1

..where ¢ is set for human and subject to change from species to species.

The resulting genotype Gmax, is assigned using the expected genotype with maximum posterior
probability.

G, =argmax{P(G|F,P, )}

8.3 Variant classification using Random Forest

The purpose of the variant classification is to assign a well-calibrated probability to each variant
call in a call set. You can then create highly accurate call sets by filtering based on this single
estimate for the accuracy of each call. The approach taken by variant classification is to develop a
continuous, covarying estimate of the relationship between variant metrics (such as ReadPosBias,
DepthBias, QD, GCPercent, OptSuboptRatio, HRun, etc. Availability of metrics further introduced in
the “VCF output” section) and the probability that a variant is a true genetic variant versus a
sequencing or secondary analysis artifact. Our model based on random forest is determined
adaptively based on 1) “true sites”, typically those sites found or verified to be polymorphic in
dbSNP v129, HapMap 3, Omni 2.5M SNP chip array and Mills and 1000G gold standard indels, and 2)
“false sites”, dynamically selected from the sites with multiple metrics fall in its worst 5%. This
adaptive error model can then be applied to both known and novel variants discovered in the call
set of interest to evaluate the probability that each call is real.

34



Features used for model training
* Total depth, [0,+o0];

* Depth of the allele with maximum depth, [0,+0];

* Depth of the allele with second maximum depth, [0,+00];
* Reference allele {A,C,G,T};

* Strand bias, [-1,1];
* Read position bias, [-1,1];

* Left GC percentage, [0,1];

* Right GC percentage, [0,1];

* Leftaverage base quality, [0,40];
* Right average base quality, [0,40];

* Strand bias, [-1,1];
* Read position bias, [-1,1];

* Total depth, [0,+o0];

Features used for selecting “false sites”

* Leftaverage base quality, [0,40];
* Right average base quality, [0,40];

8.3.3

Model training details

SNPs and Indels were identified from YH sample with ~77x 150bp paired-end reads. SNP database
dbSNP v137, IndelDB, 1000G and Mills were used for picking “true sites”.

In total, we have 1,813,021 candidate “true sites” and 29,650 candidate “false sites”. All 29,650
“false sites” and 967,936 randomly picked “true sites” were used to form a ~1M training set. A

random forest with 96 (set by parameter) trees was built on the training set, giving “out of bag”

accuracy at 0.997. The reliability diagram is as follow:

Probability
of a "true Fraction True False total
site"

0.05 0.04% 144 22,484 22,628
0.15 11.71% 193 1,981 2,174
0.25 19.88% 232 1,084 1,316
0.35 29.68% 341 772 1,113
0.45 42.34% 520 586 1,106
0.55 52.98% 610 448 1,058
0.65 69.36% 957 404 1,361
0.75 82.37% 1,499 372 1,871
0.85 91.12% 2,585 343 2,928
0.95 99.36%| 961,663 368 962,031

35



8.4 Output

8.4.1 Variant Calling Format (VCF)

BALSA outputs a very detailed tab delimited result file for the sites where the resulting genotype
Gmax is not homozygous reference alleles. The result file can be eventually converted to VCF format
version 4.1 using a script. The resulting VCF were tested to be fully compatible with downstream
analysis tools such as snpEff, VEP, GATK and online databases including Ingenuity® and
GenomeTrax®.

The quality score of each variant was calculated as

_ P, (GIF)
q= 1010g10(—(G | F))

subOpt
..where P,(G|F) is maximum posterior probability and Psupop:(G|F) is second maximum posterior
probability at a site. The higher the g, the lower ambiguity the best genotype has at the site. Limited
by computer’s numerical representation, the quality score is ranging from 0 to 3073. The
distribution of the quality score of ~5.8M unfiltered mutations (including SNPs and Indels) of YH
sample using ~50x 100bp paired-end reads is:

L i |

» |\“" U | 1
\' |
L L e

36



A variety of error cannot be represented in the genotyping models; therefore several metrics are

calculated and outputted to the VCF file for users’ reference and could be considered as the training
factors for GATK’s VQSR (VariantRecalibrator). The metrics are as follows:

ID #|Type Description
ABHet 1|Float Allele Balance for hets (alt/(ref+alt))
ABHom 1|Float Allele Balance for homs (alt/all)
AC AllInteger |Allele count in genotypes, for each ALT allele, in the same order as listed
AF A|Float Allele Frequency, for each ALT allele, in the same order as listed
AN 1|Integer |Total number of alleles in called genotypes
BQFisherPhredRef 1|Float Phred-scaled p-value using Fisher's exact test of ref Vs. perfect base qualities
BQFisherPhredAlt 1|Float Phred-scaled p-value using Fisher's exact test of alt Vs. perfect base qualities
BQFisherPhredAlt2 1|Float Phred-scaled p-value using Fisher's exact test of alt2 Vs. perfect base qualities
BestGT 1|String Best Genotype among the 16 candidate
DP 1|Integer |Total read depth; reads with MQ<=13 were filtered
DP4 4|Integer |Read depth of A,C,G,T; reads with MQ<=13 were filtered
DP8 8|Integer |Read depth of A+A-,C+,C-,G+,G-,T+,T-; reads with MQ<=13 were filtered
INDEL O|Flag Genotype with Indel at the genome position
Details of the deepest and second deepest Indel of the position. Format:
InDelMeta 8|String OptMode/OptPattern/OptHQ/OptLQ/SubOptMode/SubOptPattern/SubOptHQ/SubOptLQ
ILDP 1|Integer |Reads supporting the Indel patterns with average base quality<=13; reads with MQ<=13 were filtered
IHDP 1|Integer |Reads supporting the Indel patterns with average base quality>13; reads with MQ<=13 were filtered
LeftG 1|Integer |# of consecutive base G on the left of the Indel (+strand)
RightG 1|Integer |# of consecutive base G on the right of the Indel (+strand)
HRun 1|Integer |Largest Contiguous Homopolymer Run of Variant Allele In Either Direction
Qb 1|Float Variant (Confidence/Quality) by Depth
SBFisherPhredRef 1|Float Phred-scaled p-value using Fisher's exact test to detect strand bias of ref allele
SBFisherPhredAlt 1|Float Phred-scaled p-value using Fisher's exact test to detect strand bias of alt allele
SBFisherPhredAlt2 1|Float Phred-scaled p-value using Fisher's exact test to detect strand bias of alt2 allele
ReadPosBias 1|Float Read position bias, [-1,1], 0:no bias, positive: bias into left 100bp, negative: bias into right 100bp
Read depth balance between the left and right 100bp, [-1,1], 0: perfect balance, positive: deeper in
DepthBias 1|Float left 100bp, negative: deeper in right 100bp
Strand Bias of ref allele, [-1,1], 0: no bias, positive: bias into positive strand, negative: bias into
StrandBiasRef 1|Float negative strand
Strand Bias of alt allele, [-1,1], 0: no bias, positive: bias into positive strand, negative: bias into
StrandBiasAlt 1|Float negative strand
Strand Bias of alt2 allele, [-1,1], 0: no bias, positive: bias into positive strand, negative: bias into
StrandBiasAlt2 1|Float negative strand
LeftGCPercent 1|Integer |The percentage of GC content of the 100bp bases on the left
RightGCPercent 1|Integer |The percentage of GC content of the 100bp bases on the right
LeftQuality 1|Integer |The approximate average base quality of the 100bp bases on the left
RightQuality 1|Integer |The approximate average base quality of the 100bp bases on the right
10*log10((Highest posterior probability of the 16 genotypes)/(Second highest posterior probability of
OptSuboptRatio 1|Float the 16 genotypes))
RandomForestProb 1|Float Probability calculated by random forest for the mutation to be correct
RandomForestMode 1|Integer |Mode of variant predicted by the Random Forest, O:incorrect, 1:correct

9 Somatic Calling

9.1 Workflow

A robust approach to identify somatic mutations is to sequence a paired sample of DNA from

normal cells and DNA from tumor tissue from the same patient. The normal tissue can then act as a

control against which SNVs detected in the tumor can be screened. Given the two sets of per base
information of a tumor-normal paired sample, we focus on the problem of identifying the

genotyping difference of the paired sample at every location in the data with coverage.

9.2 Problem Formulation

For a diploid genome we consider all pairs of alleles which gives rise to a set C={4A,4AB,BB}, where
allele A indicates that the nucleotide at a position matches the reference genome and B indicates

37



that the nucleotide is a mismatch. Now given two diploid samples, the set of possible genotype
combinations is equivalent to the Cartesian product of C with itself, i.e.

CxC={(G,.G,):G,,G, EC}

The mutation types of these combinations are (Wildtype: no change; Somatic wildtype normal and
variant tumor; Germline: variant normal and tumor; LOH: loss of heterozygosity, heterozygous
normal and homozygous tumor; Error: variant normal and wildtype tumor)

Tumor
Normal AA AB BB
AA Wildtype Somatic Somatic
AB LOH Germline LOH
BB Error Error Germline

9.3 Algorithm for detecting difference between normal and tumor
To detect somatic mutations, we calculate the probability that a site is not somatic. Give the
Counters of both tumor and normal samples, we calculate a somatic score S for each site as

S

=-10log,,

N L(H,): (G, P(H,1G,) P(G,)

15 15

D D LH ) LG P(H,1G,)- P(Gy)

j=0 k=0

..where L(G;) and L(H;) are the posterior genotype probability of the ith genotype among the 16
genotypes {AA,AC,AG,AT,CC,CG,CT,GG,GT,TT,AX,CX,GX, TX, XX, XY} from normal and tumor sample,

respectively.

P(G)) is the prior probability and calculated as follows:

P(G)=]

D D

refHet (e.g. G,=AA, G,=AC)
altHom (e.g. G,=AA, G,=CC)

altHet (e.g. G,=AA, G,=CG)

15
1- EP(Gk)-P(Gk =G,) refHom (e.g. G,=AA,G,=AA)

k=0

..where 0 is the expected rate of heterozygous mutations in the species of interest and Gr is the

homozygous reference allele at the site of interest.

P(H|G) is the prior probability of a somatic mutation and calculated as follows:

38



u when H,, shares an allele with G

PH, |1G)=1 u’ when H |, shares no allele with G

15
1- Y P(H,|G):P(H,=H,) when H,, equals G

n=0

..where yu is the expected somatic mutation rate in tumor.

We only report those sites with S equals to or larger than a threshold f2 as potential somatic
mutations.

The default values used are:

6=0.001
=001
B =20

For variation types including Somatic, LOH and Error, in addition, we calculate a p-value p to
indicate how confident the mutation is using two-tailed Fisher Exact Test (recall the formula shown
in the “Variant Calling” section). The details are as follows:

™7, TW,

P21 ww, ww,

..where TW; is tumor weighted count and NW;is normal weighted count of base i. A denotes
reference base and B denotes variant base.

For variation types including Wildtype and Germline, p is calculated to show how much the variant
is different from its corresponding perfect wildtype

W, + NW, TW, + NW,
(TS+NS)-4-(1-¢) (TS+NS)-4-e

..where TS and NS is the total strand count of tumor and normal respectively. e is the error rate Pe,r,
which was previously defined in the “Variant Calling” section.

9.4 Output

BALSA outputs a very detailed tab delimited result file for potential somatic mutations. Output in
VCF will be considered in the future.

39



10 CNV

10.1 Workflow and description
BALSA’s CNV detection module is designed to detect somatic CNV, but can also process single

genomes.

Load SNAPSHOT

Process next chromosome

Step 1: Identify candidate segments

Step 2: Merge candidate segments with overlap

Step 3: Adjust merged segment boundaries

Last

-y e adiusted : chromosome
N asbeen

I

Y

Normal

Step 1: Candidates [

Step 2: Merge [

Step 3: Adjust
boundaries

Step 4: re-merge

proceed
I Output |
CNV Noise CNV Normal |
candidate candidate candidate candidate
~ 2 - v " ~
candidate candidate 1 candidate candidate ]
J -
merged segment ] [ merged segment ]
adjusted segment adjusted segment
resulting segment

40



10.2 Identify candidate segments

w/2 b
/2 bp segment 2 segment 4
Reference
segment 1 segment 3 segment 5
w bp

We divide the reference genome into segments with user defined size w (by default 300bp).
Distance of consecutive segments = w/2 (by default 150bp). To determine whether a segment is a
candidate or not, for each segment, we use Kolmogorov-Smirnov (KS) test to determine whether
the depths in the same window of both Normal and Tumor samples differ significantly. If the p-
value returned by KS test is larger than p_cutoff (by default 0.6), we mark the window as a
candidate; otherwise, discard this window.

A logzratio (hereafter referred to as IzR) is derived from each candidate, where:
logzratio = log2(RD7/RDy)

RDy and RDr denote the sum of valid read depths in the same window of the normal and tumor
sample, respectively.

10.3 Merge overlapping or adjacent candidates
For k consecutive candidate segments overlapping each other starting from i:

k=2,if abs(l,R(1))=L,R(I+1)) < p,,,oe (Pmerge by default 0.27), the segment;.; will be merged;
k= 3,if abs(l,R(i)~,R(i+2)) < p,,,, and abs(,R(i+1)-1,R(i+2)) < p,,,,., the segment; i,z will
be merged;

k> 3,if 2* normedf (min{,R(i+k-1),2-M - LRI+ k-1)},M ,sqrt(M))>0.9, the segments;.g+-1)

will be merged.
normcdf: Normal cumulative distribution function.

M: the mean of logzratio in segments;, where j is from i to (i+k-2).

41



10.4 Adjust segment boundaries

de facto boundary

Reference ( Segment A
|
kp—min

To adjust (refine) merged segment boundary, assume that a merged segment’s left-end is position i.

In tumor sample, for all the p-values calculated by KS-test between depths in region [i-w/2+k, i+k]
and region [i+k+1, i+w/2+k], where w is the segment size (300bp) and k is from -w/2 to w/2, we
pick the k with minimum p-value, i.e. i+k is the refined boundary. If equal large minimum p-values
exist, we select the first one nearest to the segment boundary.

10.5 Remerge adjacent segments with similar logzratio
This step consists of several rounds of re-merging (by default 2 rounds). The procedure of each
round of re-merging is as follows:

Denote:

* Letreg(i,j) (isj) be the region from the left point of segment i to the right point of segment .
* Let1z2R(i,j) be the logzratio of reg(i,j). Hence, 12R(i,i) = 12R(i) for any i.
* Letl;R_diff = p_merge * 1.5;

Starting from segment i, we consider segment i+1, i+2, ..., one by one. Suppose k>i is the current
segment we consider:

Let gk be the gap size between segment k-1 and segment k. Let y; be the ratio of gk to the average
size of segment k-1 and segment k.

Ifyr > 1, segment k will NOT be merged to segments;, -1);

Otherwise, if abs(l2R(k) - LoR(k-1)) > 12R_diff * (1 -y, ), segment k will NOT be merged to
segments;. k-1);

Otherwise, if abs(12R(k-1,k) - 12R(k-1)) > IR _diff OR abs(12R(k-1,k) - .R(k)) > LR_diff, segment k will
NOT be merged to segments;_(-1);

Otherwise, if abs(12R(i, k) — LR(7)) > 12R_diff, segment k will not be merged to segments;. x-1);

Otherwise, segment k will be merged to segments; k-1).

42



10.6 Performance Evaluation

The performance of the CNV detection algorithm was assessed with simulated CNV signals with
three different parameters: 1) CNV size, 2) Gap size between two adjacent CNVs, and 3) copy
number ratio. Every CNV signal type with a set of parameters has been repeated 100 times and
inserted at random genome positions. The false discovery rate (FDR, TP/(TP+FP)) was calculated
for every single CNV signals, where a true positive is defined as a detected CNV signal with 290%
reciprocal overlap with the corresponding simulated signal. The results are plotted as follows. With
gap size between 100bp to 175bp, the FDR is high for short CNV signals with subtle copy number
changes due to the difficulties of detecting the boundary of these marginal cases. Long CNV signals
with copy number loss are with relatively higher FDR due to spurious merge between two adjacent
large CNV signals. Notably, CNV signals with gap size longer than 175bp are all being properly
detected; this is probably constrained by the offset parameter of two consecutive detection
windows. The parameter could be set to lower value for better accuracy but in trade of program
running time.

FDR(%)
BOO0 oo
4000 o e
1) 3DUD\ ......
:
R LRSI RSt
% ...............
S 2000 e
1UDD ........................ ;
| : : L '..‘.
. * s e
- .. % .
............ * S .' .
DA ........ : : .....
1DD ...................... X -30
WX e
......................... i
2
| 1 . 0
Gap size 20 : -

CNY ratio

43



10.7 Output

We output a file with details for the CNVs (merged segments with refined boundaries) we found.

Column description as follows:

chr: the chromosome ID of the CNV

start: the starting position of the CNV

end: the ending position of the CNV

length: the length (end-start) of the CNV

avgDepthNormal: the mean of the depths between start and end of normal sample
avgDepthTumor: the mean of the depths between start and end of tumor sample
logzratio: the log.ratio between avgDepthTumor and avgDepthNormal

logznorm: the base-2 logarithm of (the depths between start and end of tumor
sample)/(overall mean depth of tumor sample)

p-value: the p-value of KS-test in the between depths between start and end in tumor and
normal samples

44



Appendix

1 Datasets

1.1 YH 100bp and 150bp paired-end read dataset

The 100bp and 150bp paired-end Illumina HiSeq 2000 reads of YH sample were sequenced and
deposited to EBI with study accession number ERP001652. The details are as follows:

Platfrom TruSeq Length Library ID Total Bases (Mbp) Fold Total Q20 Insert Size
110115_1270_FC81CBVABXX_L5_HUMiqvDBTDBCAPE 16,207.43 5.40 94.5;92.0 178
110130_1266_FC81EEOABXX_L5_HUMiqvDBTDBCAPE 23,824.35 7.94 92.4,91.7 178
110114_1481_FC81C7HABXX_L7_HUMiqvDBTDBAAPE 17,148.02 5.72 93.6;91.9 188

R 110201 _1441_FC81EVJABXX_L5_HUMiqvDBTDBAAPE 22,069.53 7.36 92.6;84.3 188
HiSeq2000 V2 PE100 110114_1481_FC81C7HABXX_L8_HUMiqvDBTDBABPE 17,066.68 5.69 49.48 93.6;92.1 189
110201_1441_FC81EVJABXX_L4_HUMiqvDBTDBABPE 23,318.98 7.77 92.7,83.7 189

110114 _1481_FC81C7HABXX_L5_HUMiqvDBTDIAAPE 14,640.29 4.88 93.9;91.5 464
110114_1481_FC81C7HABXX_L6_HUMiqvDBTDIBAPE 14,157.07 4.72 94.3;91.8 484

1.2 Simulated 40x 100bp paired-end read dataset

pIRS v1.1.0 (Hu et al,, 2012) was used to simulate reads from the GRCh37 major build human
reference genome including 22 autosomes, 2 allosomes and a mitochondrial chromosome. pIRS
simulates Illumina reads with empirical base calling and GC%-depth profiles trained from real
resequencing data. It claims that the error and base quality distributions as well as coverage bias
patterns of simulated reads using pIRS fit the properties of real sequencing data better than
existing simulators.

40-fold of 100bp paired-end reads with 500bp mean insert size and 25bp standard deviation were
simulated with command:

pirs simulate -i FASTA1 -1 FASTAZ -x 40 -c 1 -o OUTPUT

..Where, FASTA2 was generated from FASTA1 with SNPs, Indels and structural variations
introduced with command:

pirs diploid -i FASTA1 -a 2.1 -c 2 -0 FASTAZ

Eventually, 1) Three lists respectively for the SNPs, Indels and structural variants introduced in
FASTAZ2 and 2) a pair of gzipped FASTQ file was given.

The Indel list provided by pIRS was left aligned using the following perl script for further
comparison. The script takes the Indel list as the first parameter and the reference FASTA’s path
(samtools faidx’ed) as the second parameter.

#!/usr/bin/perl -w
use strict;

my $indelFN; my $ref;

($indelFN,$ref) = @ARGV;
die "perl $0 <indel list> <reference>\n" unless defined $ref;

45



open my $indelFH, "$indelFN" or die $!;

while(<$indelFH>)
{
chomp;
my @F = split;
my $pattern = $F[4];
my $begin = $F[1] - 501; $begin = 1 if $begin < 1;
my $region = "$F[0]:$begin-$F[1]";
my @return = “samtools faidx $ref $region”;
chomp @return;
my $seq = join "", @return[l..(@return-1)];
$seq =~ tr/acgtn/ACGTN/;
my $len = 0;
while($seg=~s/A\w+\K(\w)$//g) {
my $char = $1;
if($pattern =~ /$char$/) {
$pattern = "$char".(substr($pattern, @, (length($pattern)-1)));
--$F[11;

++$len;

}
else { last; }
}
print STDERR $len if $len > 0;
print join "\t",@F;
print "\n";

All simulated datasets are available at http://bio8.cs.hku.hk/dataset/BALSA

46



2 Commands

Unless explicitly mentioned, the CPU based aligners and downstream analysis programs were set to
use 6 CPU cores (12 threads with Hyper-Threading enabled) without memory limitation on a single
computing node with Intel i7-3730k @ 3.2GHz, 64G main memory and 1T two SDD raidO disk.
Programs utilizing GPU were provided with an nVidia GTX680 with 4G on-board memory.

2.1 The BALSA pipeline (version r166)

2.1.1 Preparing databases for BALSA

Building known SNP database:

buildSnpDBIndex $Index ${VCF Input} ${Output {prefix}}

, the command generates two output files, {prefix}.bv and {prefix}.1list.

Building known Indel database:
buildIndelDBIndex $Index ${VCF Input} ${Output path}

Building 1) Exome region database or 2) known gene region database:
buildRegionIndex $Index ${GFF format Input} ${Output path}
Currently only support GFF format input.

2.1.2 From raw reads to variants
BALSA takes in an 8-column multi-row list, which is formatted as following:

rl.fastq.gz r2.fastq.gz 0 1000 out ID SAMPLE_NAME LB:LIBRARY_NAME\tPL:ILLUMINA\tPU:PLATFO
RM_UNIT

where 0 and 1000 represents the minimum and maximum insert size allowed in which an aligned
read pair can be classified as “properly paired”.

With the list prepared, we ran BALSA using command:

balsa pair-multi genome.fa.index dbSNP IndelDB GeneRegionIntervalList list outputPrefix -1 -L. LEN -
t tmpPrefix

where dbSNP, IndelDB and GeneRegionIntervalList are the input files preprocessed dbSNP, known
Indel database and the interval list of gene regions, respectively; outputPrefix is the file-name-prefix
of files storing outputs including SNAPSHOT and variant calling results. LEN is the maximum read
length in the input. -/ indicates 64-base quality encoding. tmpPrefix is the file-name-prefix of
intermediate files, typically on a local hard disk or a SSD.

Converting BALSA output to VCF:
perl txt2vcf.pl BALSAoutput sampleName ref

where, BALSAoutput is the output of BALSA, sampleName is the name of sample that would be
included into the VCF file, and refis the reference genome fasta file.

47



2.1.3 Filtration
The resulting VCF file can be filtered and tagged using following commands (Utilizing GATK’s VQSR
and the Random Forest Probability),

java -Xmx20g -jar $gatk28 -R $ref -T SelectVariants --variant $input.vcf -selectType SNP -
o $input.SNP.vcf

java -Xmx20g -jar $gatk28 -R $ref -T SelectVariants --variant $input.vcf -selectType INDEL -
o $inputINDEL.vcf

java -Xmx20g -jar $gatk28 -R $ref -T VariantRecalibrator -input $input.SNP.vcf \
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.hg19.vcf \
-resource:omni,known=false,training=true,truth=false,prior=12.0 1000G_omni2.5.hg19.vcf \
-resource:dbsnp,known=true,training=false,truth=false,prior=8.0 dbsnp_137.hg19.vcf \
-an DP \
-an ReadPosBias \
-an DepthBias \
-an StrandBiasAlt \
-an LeftGCPercent \
-an RightGCPercent \
-an ABHet \
-an QD \
-an OptSuboptRatio |
-an LeftQuality \
-an HRun |\
-recalFile $input.SNP.recal -tranchesFile $input.SNP.tranches -mode SNP -nt 12 -minNumBad 5000 -
titv 2.15

java -Xmx20g $tmp -jar $gatk27 -et NO_ET -K $key -1 INFO -R $ref -T VariantRecalibrator -
input $input.INDEL.vcf \
resource:mills,VCF,known=true,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_standard.i
ndels.hg19.sites.vcf \
resource:phasel,VCF,known=true,training=true,truth=true,prior=9.0 1000G_phasel.indels.hg19.vcf \
-an DP \
-an ReadPosBias \
-an DepthBias \
-an BQFisherPhredAlt \
-an SBFisherPhredAlt \
-an I[HDP \
-an ILDP \
-an LeftGCPercent \
-an RightGCPercent \
-an ABHet \
-an QD \
-an OptSuboptRatio |
-an LeftQuality \

48



-an HRun \
-recalFile $input.INDEL.recal -tranchesFile $input.INDEL.tranches -mode INDEL -numBad 5000

java -Xmx20g $tmp -jar $gatk28 -et NO_ET -K $key -R $ref -T ApplyRecalibration -
input $input.SNP.vcf --ts_filter_level 99.0 -recalFile $input.SNP.recal -
tranchesFile $input.SNP.tranches -mode SNP -o $input.applyRecalibration.SNP.vcf

java -Xmx20g $tmp -jar $gatk28 -et NO_ET -K $key -R $ref -T ApplyRecalibration -
input $input.INDEL.vcf --ts_filter_level 99.0 -recalFile $input.INDEL.recal -
tranchesFile $input.INDEL.tranches -mode INDEL -o $input.applyRecalibration.INDEL.vcf

java -Xmx2g -jar $gatk28 -R $ref -T VariantFiltration --variant $input.applyRecalibration.SNP.vcf -
o $output --filterName "bad2" --

filterExpression 'RandomForestProb<0.8 [[ (StrandBiasAlt>0.66 || StrandBiasAlt<-

0.66) || (vc.hasAttribute("StrandBiasRef") && (StrandBiasRef>0.66 || StrandBiasRef<-

0.66)) || (vc.hasAttribute("StrandBiasAlt2") && (StrandBiasAlt2>0.66 [| StrandBiasAlt2 <-

0.66)) || (DepthBias>0.66 || DepthBias<-0.66) || (ReadPosBias>0.66 || ReadPosBias<-0.66) [| QD<30" --
filterName "bad1" --

filterExpression 'RandomForestProb<0.95 || (StrandBiasAlt>0.5 || StrandBiasAlt<-

0.5) || (vc.hasAttribute("StrandBiasRef") && (StrandBiasRef>0.5 [| StrandBiasRef<-

0.5)) || (vc.hasAttribute("StrandBiasAlt2") && (StrandBiasAlt2>0.5 || StrandBiasAlt2<-

0.5)) || (DepthBias>0.5 || DepthBias<-0.5) || (ReadPosBias>0.5 || ReadPosBias<-0.5) [| QD<35" --
maskName "dbSNP" --mask dbsnp_137.hg19.vcf -cluster 3 -window 10

java -Xmx2g -jar $gatk28 -R $ref -T VariantFiltration --variant $input.applyRecalibration.INDEL.vcf -

o $output --filterName "bad2" --

filterExpression '(((IHDP+1)/(ILDP+1))<2 && ILDP>=3) || RandomForestProb<0.8 || SBFisherPhredAl
t>20 || (DepthBias>0.66 || DepthBias<-0.66) || (ReadPosBias>0.66 [| ReadPosBias<-0.66) || QD<30" --

filterName "bad1" --

filterExpression '((IHDP+1)/(ILDP+1))<2/] RandomForestProb<0.95 || SBFisherPhredAlt>10 || (Depth
Bias>0.5 || DepthBias<-0.5) || (ReadPosBias>0.5 || ReadPosBias<-0.5) [| QD<35" --

maskName "dbSNP" --mask dbsnp_137.hg19.vcf -cluster 3 -window 10

To get a clean vcf:

awk '{if(/"#/){print}else if($§7=="dbSNP"[|$7=="PASS"){print}else if(($7=="bad1;dbSNP"[|$7=="VQSR
TrancheSNP99.00t099.90;dbSNP"[|$7=="SnpCluster;dbSNP")&&$6>=30){print}' $output > $filteredOu
tput

Note that the command retains those known variants marked with “dbSNP” notwithstanding also
being marked with “bad1”, “TrancheSNP99.00t099.90” or “SnpCluster”, but requires the variant
score larger than 30. A strengthened setting is to retain only variants marked with “dbSNP” or
“PASS”.

2.1.4 Call somatic mutation
Run somatic calling:

somatic-caller ${index} ${path_snapshot_normal} ${path_snapshot_tumor} ${somatic_score_threshold
} ${output}

49



where somatic_score_threshold is set to 10 by default.
Divide the Somatic variants into Somatic SNV and Indels:

awk 'NR==1J|($NF=="A"||$NF=="C"||$NF=="G"||$NF=="T")' $input > $somaticSNV
awk 'NR==1[[($NF=="X"||$NF=="Y")" $input > $somaticlndel

Filtration:

Retain those 1) Somatic or LOH variants; 2) 4<Depth<200; 3) for those variants with somatic score
larger than 30, strand bias test with p-value = 0.001, or otherwise strand bias test with p-value
>0.01.

awk '($5=="Somatic"||$5=="LOH") && ($17+$18+$19+$20+$21+$22+$23+$24+$27+$28+$31+$32)>=
10 && ($17+318+819+$20+$21+$22+$23+$24+327+$28+$31+$32)<200 && ($63+$64+$65+$66+$67+
$68+$69+870+$73+$74+$77+$78)>=10 && ($63+$64+$65+$66+$67+$68+$69+$70+373+$74+877+$7
8)<200 && ((($49>=0.01 && $50>=0.01 && $51>=0.01 && $52>=0.01) && ($95>=0.01 && $96>=0.01
&& $97>=0.01 && $98>=0.01)) || ($4>=30 && (($49>=0.001 && $50>=0.001 && $51>=0.001 && $52>=
0.001) && ($95>=0.001 && $96>=0.001 && $97>=0.001 && $98>=0.001))))"

2.1.5 CallCNV
Run CNV calling:

cnv-caller ${index} ${path_snapshot_normal} ${path_snapshot_tumor} ${read_length} ${window_size}
${p_cutoff} ${p_merge} ${num_merge_rounds}

where read_length is the longest read length of the input, window_size is the size of CNV candidate
window, p_cutoffis the p-value threshold of choosing CNV window, p_merge is the p-value
threshold of merging CNV windows, num_merge_rounds refers to the number of remerge rounds.

2.2 Running BWA
BWA version 0.7.5a-r405 was used for alignment. Samtools version 0.1.19-44428cd was used for
post-processing. The alignment of each lane was executed with the following commands:

2.2.1 aln
mkfifo r1.pipe r2.pipe

bwa aln -1 -t 6 genome.fasta r1.fastq.gz | bfr -b 1G > r1.pipe &
bwa aln -1 -t 6 genome.fasta r2.fastq.gz | bfr -b 1G > r2.pipe &

bwa sampe -r '@RG\tPL:ILLUMINA\tID:ID\tSM:SAMPLE_NAME' genome.fasta r1.pipe r2.pipe r1.fastq.
gz r2.fastq.gz | bfr -b 1G | samtools view -S -u -t genome.fasta.fai - [ samtools sort - out.sorted

rm rl.pipe r2.pipe

The alignment of r1 and r2 start simultaneously and pipe the results to post procedures including
‘sampe’, ‘sam2bam’ and ‘sort’ on the fly. The program 'bfr' acts like a buffering dropin replacement

50



for 'cat' (program available at

http://archive.ubuntu.com/ubuntu/pool/universe/b/bfr/bfr_1.6.orig.tar.gz). It enables the
program before a pipe (e.g. aln) to be going on instead of being blocked by the program after a pipe
(e.g. sampe). Experiments done by our lab indicated that this is the best way to utilize
computational resource as much as possible on a single computing node, which is also the fastest
way we can achieve.

2.2.2 mem
bwa mem -t 12 -R '@RG\tPL:ILLUMINA\tID:ID\tSM:SAMPLE_NAME' -M genome.fasta r1.fastq.gz r2.fa
stq.gz | bfr -b 1G | samtools view -S -u -t genome.fasta.fai - [ samtools sort - out.sorted

Following completion of the alignment, the output bam is indexed with following command:

samtools index out.sorted.bam

2.3 Running SOAP3-dp

SOAP3-dp r176 was used for alignment. SOAP3-dp’s batch-run mode takes in an 8-column multi-
row list, which is formatted as following:

rl.fastq.gz r2.fastq.gz 0 1000 out ID SAMPLE_NAME LB:LIBRARY_NAME\tPL:ILLUMINA\tPU:PLATFO
RM_UNIT

..where 0 and 1000 represents the minimum and maximum insert size allowed in which an aligned
read pair can be classified as “properly paired”.

With the list prepared, we ran SOAP3-dp using command:
soap3-dp pair-multi genome.fa.index list -b 3 -1 -L LEN
..where LEN is the maximum read length in the input.

Following the completion of the alignment, the multiple outputted bam files were 1) sorted
individually, 2) eventually merged into a single bam file and 3) being indexed using samtools.

2.4 Running the GATK pipeline and multiple (Ensemble) variant callers

2.4.1 Post-processing
Following the completion of the alignment, the Picard tool version 1.89 was used to remove
duplicate reads.

java -Xmx32g -jar MarkDuplicates.jar [=output.sorted.bam O=output.dedup.bam CREATE_INDEX=true

Indel realignment and base score recalibration is performed using GenomeAnalysisTK-2.8-1-
g932cd3a (with database bundle v2.3) with the following commands:

java -Xmx32g GenomeAnalysisTK.jar -T RealignerTargetCreator -nt 6 -R genome.fasta -1 output.dedup.
bam -o intervals --known Mills_and_1000G_gold_standard.indels.hg19.vcf --known 1000G_phasel.indel
s.hg19.vcf

51



java -Xmx8g -jar GenomeAnalysisTK.jar -T IndelRealigner -model USE_READS -known Mills_and_1000
G_gold_standard.indels.hg19.vcf -known 1000G_phasel.indels.hg19.vcf -R genome.fasta --targetinterv
als intervals -1 output.dedup.bam -o output.realigned.bam -L chr1l

..where IndelRealigner was ran for each chromosome to facilitate parallelization.

java -Xmx32g -jar GenomeAnalysisTK.jar -T BaseRecalibrator -nct 6 --knownSites Mills_and_1000G_go
Ild_standard.indels.hg19.vcf --knownSites 1000G_phasel.indels.hg19.vcf --knownSites dbsnp_137.hg19.
vef -R genome.fasta -1 output.realigned.bam -o grp

java -Xmx32g -jar /nas1/rbluo/soap3-dp/bin/GenomeAnalysisTK. jar -T PrintReads -nct 6 -BQSR grp -
R genome.fasta -1 output.realigned.bam -o output.final. ham

2.4.2 Ensemble variant caller (Variant calling with 7 callers)

We searched for variants using Atlas2 v1.4.3.r158 (Shen et al,, 2010, Challis et al,, 2012), GATK
HaplotypeCaller and UnifiedGenotyper v2.8-1-g932cd3a (DePristo et al,, 2011), Freebayes v0.9.9
(Garrison et al., 2012), Mutect v1.1.4 (Cibulskis et al., 2013), Samtools v0.1.19 (Li et al., 2009) and
VarScan v2.3.5 (Koboldt et al., 2012). Unless explicitly mentioned 1) the caller was ran using default
parameters, 2) both SNP and Indel results of a caller were used for integration and downstream
analyses.

2.4.2.1 Atlas2

Atlas2-SNP and Atlas2-Indel are based on logistic regression model. [llumina mode and a minimum
depth of 4 were set for detection. Atlas2 does not provide variant quality and other metric in the
output for downstream judgment but uses built-in filters to classify the mutation, printing PASS or
FAIL tags in the output.

2.4.2.2 GATK UnifiedGenotyper and HaplotypeCaller

UnifiedGenotyper uses Bayesian likelihood model while HaplotypeCaller combines a local
assembler and an affine gap penalty Pair Hidden Markov model to estimate the genotype and its
probability. Following completion of the variant calling, variant quality score recalibration is
performed. Firstly, SNPs and Indels were split into two separate files; variant recalibration is then
performed on the extracted variants with the following commands:

java -Xmx32g -jar GenomeAnalysisTK.jar -R genome.fasta -T VariantRecalibrator -input output.final.S

NP.vcf -resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.hg19.vcf -reso

urce:omni,known=false,training=true,truth=false,prior=12.0 1000G_omni2.5.hg19.vcf -resource:dbsnp,
known=true,training=false,truth=false,prior=8.0 dbsnp_137.hg19.vcf-an QD -an HaplotypeScore -an M
QRankSum -an ReadPosRankSum -an FS -an MQ -recalFile SNP.recal -tranchesFile SNP.tranches -mod

e SNP

java -Xmx6g -jar GenomeAnalysisTK.jar -R genome.fasta -T VariantRecalibrator -input output.final IN
DEL.vcf -resource:mills,VCF, known=true,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_st
andard.indels.hg19.vcf -resource:phasel,VCF,known=true,training=true,truth=true,prior=9.0 1000G_p
hasel.indels.hg19.vcf -an QD -an FS -an ReadPosRankSum -an MQ -an MQRankSum -recalFile INDEL.r
ecal -tranchesFile INDEL.tranches -mode INDEL

52



java -Xmx6g GenomeAnalysisTK.jar -R genome.fasta -T ApplyRecalibration -input output.final. SNP.vcf
--ts_filter_level 99.0 -recalFile SNP.recal -tranchesFile SNP.tranches -mode SNP -o output.recalibrated.
SNP.vcf

java -Xmx6g GenomeAnalysisTK jar -R genome.fasta -T ApplyRecalibration -input output.final. INDEL.v
cf --ts_filter_level 99.0 -recalFile INDEL.recal -tranchesFile INDEL.tranches -mode INDEL -o output.rec
alibrated.INDEL.vcf

Mutations with “VQSRTranche” larger than 99.0% were removed.

2.4.2.3 Freebayes

Freebayes is a haplotype-based variant detection method based on Bayesian statistical framework.
Reads with 1) mismatches more than 10% of the read length; 2) 0 mapping quality; 3) more than 4
separate gaps were filtered. Mutations with 24-read support were used for integration and
downstream analyses.

2.4.2.4 Mutect

Mutect is a method that applies a Bayesian classifier to detect somatic mutations with very low
allele frequency. It was designed to identify somatic variants from paired samples but is able to be
configured to detect SNP. The HC filters in Mutect were reported to be able to reduce the false
positive rate by an order of magnitude. Mutations failing the filters will be assigned with a “REJECT”
tag and be excluded for integration and downstream analyses. Mutect was only able to generate
SNP results.

2.4.2.5 SAMtools genotype calling

The ‘mpileup’ command in SAMtools together with the accompanying ‘bcftools’ were used to
identify SNPs and Indels at locations with equal or more than 10 reads supporting. The raw results
were filtered using “vcfutils.pl varFilter” program with default parameters.

2.4.2.6 VarScan genotype calling

VarScan requires input in pileup format, which was generated with SAMtools’ ‘mpileup’ using
parameters 1) minimum mapping quality of one and 2) extended BAQ (Li et al,, 2012) sensitivity.
We ran VarScan requiring 1) Fisher exact test with a 0.98 significance level and 2) 24 reads support.
Only Indels identified by VarScan were used for integration and downstream analyses.

2.4.3 Integrating variant results from 7 callers

2.4.3.1 SNP integration

SNP results of each caller were merged using GATK CombineVariants. SNPs 1) specifically called by
only a tool and with variant quality score lower than 50% of all SNPs identified by the tool; 2) with
all tools with variant quality score lower than 90% of all SNPs identified by the corresponding tools;
3) with <4 reads supporting were filtered. Specifically, as we’'ve observed increased artifacts in
Atlas2-SNP with high depth, SNPs specifically detected by Altas2-SNP with depth 2100 but not
conforming filtering condition 1, were also filtered.

53



2.4.3.2 Indel integration
Indel results of each caller were pre-processed by GATK LeftAlignAndTrimVariants and then
merged using ‘vcf-merge’ from ‘vcftools’ (http://vcftools.sourceforge.net). Indel 1) specifically

called by only a tool; 2) with <4 reads support, were filtered.

2.5 The Isaac pipeline
Alignment was performed using the Isaac aligner version 13.09.17. The Isaac aligner executable
isaac-align was run with following non-default parameters:

--reference-genome genome.xml
--reference-name default
--base-calls-format fastq-gz
--temp-directory /ssd/

--jobs 12

--memory-limit 55
--base-quality-cutoff 15

Following completion of the alignment step, variant calling is performance using the Isaac variant
caller. The Isaac variant caller workflow creates a makefile for subsequent parallel analysis
according to a ini file with following settings:

isSkipDepthFilters = 1
maxInputDepth = 10000
depthFilterMultiple = 3.0
indelMaxRefRepeat = -1
minMapq = 20

minGQX = 30
isWriteRealignedBam = 0

binSize = 25000000

2.6 Running Mutect for somatic mutations

Following the completion of the alignment and GATK pre-processing of both normal and tumor
samples, the somatic mutation calling using Mutect version 1.1.4 is performed with the following
command on all chromosomes:



java -Xmx4g -jar muTect-1.1.4.jar --analysis_type MuTect --reference_sequence genome.fasta --cosmic
b37_cosmic_v54_120711.vcf--dbsnp dbsnp_132_b37.leftAligned.vcf --input _file:normal output.final.nor
mal.bam --input_file:tumor output.final.tumor.bam --out chrl.out --coverage_file chr1.wig --intervals c
hri

55



