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Abstract
Supplemental material to accompany “Closed-Form Estimation of Multi-
ple Change-Points Models” by Greg Jensen. A variety of non-psychological
datasets are analyzed to demonstrate broad applications of the Conjugate
Partitioned Recursion (CPR) algorithm. A method for performing a sen-
sitivity analysis is demonstrated. A weakness in the algorithm is identi-
fied in cases of large-scale stationary distributions, and two modifications
to the standard procedure are proposed to circumvent that weakness: The
‘dicing’ operation (whose function is strictly exploratory) and the ‘forward-
retrospective’ algorithm, which makes assessments sequentially rather than
recursively. Finally, the mathematical basis for the conjugate priors invoked
in the main article and the formulas for empirical Bayes ‘rule-of-thumb’ pri-
ors are provided.

Keywords: bayesian statistics, change-point analysis, marginal likelihood,
time series analysis

Additional Examples1

The examples provided in the main text showcase several experimental applications of2

the CPR algorithm. Although change-point algorithms remain uncommon in many exper-3

imental domains, they have a long history of use in actuarial, industrial, and econometric4

applications. In the interest of providing a bridge between that tradition, several further5

examples are provided here. These examples also demonstrate some of the probability dis-6

tributions not discussed in the main text. In all cases, a decision criterion of τ = 10 is used,7

and all analyses were performed on a dual-core 2.93GHz laptop.8

British Coal-Mining Disasters9

One of the signature datasets in the statistical analysis of change-points reports10

British coal-mining disasters (involving at least 10 men) over the period from March 15, 185111

to March 22, 1962. These data have been reported both as the interval between disasters12

in days (Jarrett, 1979) and as the number of disasters per year (Carlin et al., 1992).13
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Exponential Model

Probabilityθ̂1 = 114.8 θ̂2 = 394.4
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Poisson Model

Probabilityλ̂1 = 3.05 λ̂2 = 0.90
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Figure 1 . British coal-mining disasters between 1851 and 1962, represented as days between
disasters (left) and number of disasters per year (right). In both cases, the CPR algorithm,
using the appropriate rule-of-thumb empirical prior, finds a single change-point. Each plot
shows its distribution’s probability function as a color map, based on the posterior parameter
estimates.

Because the probability of a major coal mining disaster is low, and because disasters1

at different mines are presumably independent of one another, the intervals between dis-2

asters follow an exponential distribution, while the number of disasters per year (or any3

other interval) is Poisson-distributed. This intimate relationship between the exponential4

distribution and the Poisson distribution is clear from their conjugate relationship: The5

MML for the exponential distribution is Gamma (n,
∑
x), while the MML for the Poisson6

distribution is Gamma (
∑
x, n).7

Figure 1 shows the results of the CPR algorithm for the coal-mining disaster8

data, represented both as an exponential model of intervals measured in days (prior9

= Pr (θ) = Gamma (1, 114)) and as a Poisson model of disasters per year (prior =10

Pr (λ) = Gamma (1, 1)). Here, the exponential parameter θ estimates the distribution of11

‘days between disasters’ and the Poisson parameter λ estimates the distribution of ‘disasters12

per year.’ In both cases, a single change-point is identified. The exponential model places13

the change between 124th and 125th disasters, between March 10th, 1890 and April 2nd,14

1891, whereas the Poisson model places the change between 1892 and 1893. These changes15

coincide with a period of regulatory reform in British mining, particularly the Coal Mines16

Act of 1887 (Anderson, 1911). Note that the parameters estimates are very similar, but17

not identical:
[
θ̂1 = 114.8 ≈ 365

λ̂1
= 119.7

]
;
[
θ̂2 = 394.4 ≈ 365

λ̂2
= 405.6

]
. Given the small size18

of the dataset (190 intervals over 112 years), computing the position of this change-point19

required less than a tenth of a second.20
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Figure 2 . Nuclear-magnetic response of rock strata in an oil well bore-hole. Points cor-
respond to individual observations. The red line indicates the estimated mean (with one
standard deviation shown in light red) within segments identified by the CPR algorithm.

Given a choice between representing the data using either distribution, using the1

Poisson representation results in a loss of some information (dependent on the size of the2

intervals), so an exponential representation is preferred when precise timestamps are known3

for all events. Consequently, the exponential estimate is likely to be a better estimate. In4

many cases, however, counts within regular intervals are the only data available from the5

records.6

Well-Log Data7

Another well-studied dataset is a series of 4,050 nuclear-magnetic response measure-8

ments from a geological assay. Measurements were taken at regular intervals as a probe9

was lowered into a bore-hole, with changes in the response implying strata with different10

properties. Originally introduced by Ó Ruanaidh & Fitzgerald (1996), this dataset pro-11

vides a robust test of change-point algorithms because it only weakly conforms to standard12

distributional assumptions, both in terms of outliers (which could reflect either distinctive13

strata or mere measurement noise) and substantial and inconsistent rounding error.14

Assuming that the data followed a Gaussian distribution with unknown parameters,15

Figure 2 shows the change-points identified by the CPR algorithm, given a Normal-Gamma16

prior based on the median and median absolute deviation of the data (a = 114000, b = 0.1,17

c = 1, d = 2965.2). This prior remains relatively weak with respect to the mean (as b = 0.118

corresponds to only 1/10 of a hypothetical observation), but is somewhat stronger with19

respect to the variance (as c = 1 corresponds to one full hypothetical observation). The20

prior standard deviation d was estimated from the median absolute deviation of the the first21

differences (that is, the difference between consecutive observations), a robust econometric22

technique for assessing volatility in the presence of omitted variables (Wooldridge, 2002).23
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The resulting change-point model consists of 22 change-points, taking approximately 141

seconds to calculate.2

One can get a sense of the CPR algorithm’s rapidity by comparing it to the “poste-3

rior simulation” analyses performed on the dataset by Fearnhead (2006). These analyses4

use recursive sampling to effect a numerical integration of the posterior odds. When their5

analysis was performed on a 3.4GHz PC, a “piecewise-constant” posterior simulation algo-6

rithm performed 10,000 simulations that required 26 seconds to run, identifying between7

45 and 60 change-points. Fearnhead also ran a more robust “random walk” model, which8

took approximately 19 minutes and only identified between 12 and 21 change-points; these9

models were subsequently compared to a brute-force Markov-chain Monte Carlo (MCMC)10

method.11

This result is impressive, with a runtime that outperformed MCMC by about two12

orders of magnitude. Nevertheless, implementation requires that the analyst make sub-13

stantial assumptions (such as consistent variance over time), and required that outliers be14

removed from the data prior to analysis. Additionally, because the method relies on random15

resampling, slightly different results are obtained with each simulation. The CPR algorithm16

compares very favorably, as it identifies close to the optimal number of change-points in17

less time than the faster algorithm reported by Fearnhead, produces identical results every18

time it is run, permits the variance to change from one segment to the next, and does not19

require the pruning of outliers.20

Treasury Bill Rates21

In econometrics, change-point analysis is often demonstrated using the nominal rate22

on three-month U.S. Treasury bills (or T-bills). Because these data are freely available to23

the public, and are regularly updated, it has been used as a test case in both retrospective24

(Bai, 1997) and prospective (Pesaran et al., 2006) change-point analysis.25

Figure 3 shows two different implementation of the CPR algorithm to monthly T-bill26

data over the period from June 1947 to February 2013. The top plot shows the posterior27

estimates for a linear regression model. This approach identifies 28 change-points, and is28

highly sensitive to big shifts. The bottom plot shows the ‘first differences’ (Wooldridge,29

2002), which emphasizes the volatility in the data over the current rate (Meligkotsidou30

& Dellaportas, 2011). Here, as in Figure 2, both the mean and one standard deviation31

are shown. This approach identifies only 15 change-points, because segments with similar32

volatility (e.g. throughout the 90s) are likely to be grouped together.33

The contrasting benefits of these two methods depends on the purpose of the analysis.34

The regression analysis is more complex, devoting three parameters to each segment (slope,35

intercept, and the free cells of the estimated coefficient covariance matrix), and provides a36

much more accurate historical description. On the other hand, the first differences provide37

a more useful summary statistic for examining volatility. A comparable experimental case38

might be the study of motor impairment: Studying of the distance moved over each time39

interval is likely to be more informative than absolute position when tremors are a symptom40

of interest.41
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Figure 3 . Rates on three-month U.S. Treasury bills, calculated monthly from June 1947 to
February 2013. (Top) Nominal rates, with red lines displaying the model inferred by a linear
regression change-point analysis. (Bottom) First differences of nominal rates (xi − xi−1),
with the means (red) and one standard deviation (light red) from a Gaussian change-point
analysis.

Sensitivity Analysis1

An essential consideration in using the CPR algorithm is the selection of the decision2

criterion τ . In the examples presented, a criterion of τ = 10 has been used because it3

provides a good balance between description and parsimony. ‘Good’ is a subjective term,4

however, and there is not always a good correspondence between results that are statistically5

vs. theoretically significant. This is further complicated by the relationship between a6

criterion’s efficacy and subtle differences in the assumptions underlying different models.7

A benefit of the CPR algorithm is that, given its reliance on closed-form solutions, it8

is trivial to perform a post-hoc calculation of the likelihood of the data once the parameters9

have been estimated. The overall efficacy of the entire model (across all segments) can then10

be compared to other such models using the Schwarz-Bayes Information Criterion (SBIC;11

Schwarz, 1978). As noted in the main text, SBIC arises from an approximation of the12
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marginal model likelihood m (x,M):1

m (x,M) ∝̃f (x|θ,M)
( 1
n

)p/2
(1)

The conventional practice is to convert this approximation into a score measured on a log2

scale:3

SBIC (x) = −2 · log (f (x|θ,M)) + p · log (n) + Cx (2)

Here, given the observations x, a value is calculated that depends on twice the negative log4

of the likelihood function f (x|θ,M), on the number of free parameters p, and on the total5

number of observations n. For data x, there is also a constant Cx, which prevents the direct6

comparison of two datasets x and y (as they might have different constants). However, the7

SBIC can be used to compare how well different models fit the data x because the constant8

Cx will cancel out of such comparisons. The model with the lowest SBIC is considered9

the best, because its overall marginal model likelihood is approximately the highest (Yang,10

2005).11

Although the SBIC was originally intended to be used in cases where observations in-12

dependent and identically distributed, its derivation has been generalized to non-identically13

distributed cases as well, having particular success in comparing time-series models (Ca-14

vanaugh & Neath, 1999). This makes it a suitable metric for performing a sensitivity15

analysis.16

In order to examine the effects of the decision criterion τ on the resulting change-17

point model, a sensitivity analysis consists of running the analysis multiple times using18

different criteria but keeping other parameters constant. For each criterion that is tested,19

the resulting change-point model M is then used to calculate an SBIC using the following20

equation:21

SBIC (x,M) = −2
[∑
i∈M

log (f (xi|θi,M))
]

+ (length (M) (pM + 1)− 1) · log (n) + Cx (3)

Here, the log likelihood is summed in each of the segments of M, and the free parameters22

consist of the one set of model parameters pM for each segment, plus a free parameter for the23

position of each change-point (Yao, 1988). In the analyses performed below, the parameters24

θi were estimated post-hoc, using frequentist methods, to minimize the relationship between25

the prior assumptions and the subsequent sensitivity analysis.26

Figure 4 demonstrates the results of such a sensitivity analysis for the datasets dis-27

cussed in the main article and in the supplement. Although each dataset displays its own28

idiosyncrasies, several themes are evident from their comparison.29

First, it is clear that models vary in their sensitivity to the decision criterion. For30

example, linear regression models are quite resistant to changes in τ . The regression model31

describing T-bill rates differs only by a few change-points over the range 1 ≤ τ ≤ 10032

(Figure 4, lower left), and the reaction time data from Palmeri (1997) are not included in33

Figure 4 because they returned the same result regardless of the decision criterion used. On34

the other hand, the binomial data describing SimChain performance (Figure 4, upper left,35

Jensen et al., 2013), and the Gaussian distribution of T-bill rate first differences (Figure 4,36
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Figure 4 . Sensitivity analysis performed on two datasets from the main body text and
three from the supplement. The decision criterion τ was varied between 1 and 100, and the
SBIC was calculated for each resulting model, using Equation 3. Relative SBIC among the
models is plotted in red (with the best model set at zero), and the number of data segments
is plotted in blue.



MULTIPLE CHANGE-POINT SUPPLEMENT 8

lower right) both demonstrate the risk of overfitting when the decision criterion is too lax.1

Additionally, the SimChain data show a risk of underfitting if the criterion is too harsh.2

A different issue is raised by the sensitivity analysis performed on the well-log mea-3

surements. Figure 4 (center left) shows the results of the sensitivity analysis when the4

empirical ‘rule-of-thumb’ prior is used (hyperparameters a = 114000, b = 0.1, c = 0.1,5

d = 5930.4). However, these data do not conform well to the assumptions of a Gaussian6

distribution (due to device imprecision), and a different prior was used in the analysis de-7

scribed above (hyperparameters a = 114000, b = 0.1, c = 1, d = 2965.2). Figure 4 (center8

right) shows the results of using this ‘elicited’ prior (so-called because its selection depends9

on the analyst’s discretion about the meaning of the data). When using the rule-of-thumb10

prior (which is weakly subjective), a great deal of sensitivity to the decision criterion was11

observed. Contrastingly, when a prior with a stronger prior assumption about the disper-12

sion of the data was used, the influence of the decision criterion was much smaller. The13

sensitivity of posterior results to the prior is a well-established problem, and one of the14

central pillars of the argument in favor of objective Bayesian methods (Samaniego, 2012).15

Responsible use of subjective priors should include a sensitivity analysis with respect to the16

prior (Gelman et al., 2003).17

Across these six sensitivity analyses, τ = 10 performs reasonably well, neither result-18

ing in dramatic over- or under-fitting of the data. Although performing sensitivity analyses19

is an important element of statistical due diligence, τ = 10 is a reasonable default value for20

the decision criterion.21

A Failure Condition: CPR Insensitivity When Data Are Stationary22

Although intended for large datasets, the sensitivity of the CPR algorithm to change-23

points is reduced in cases where changes occur frequently and values oscillate around some24

central value. Closed-form, conjugate solutions for m (x,M) depend only on the prior hy-25

perparameters and the data’s sufficient statistics, both of which usually ignore the temporal26

structure of values within each segment (that is, they assume ‘exchangeability’). Thus, seg-27

ments containing many changes that oscillate around a stable central value are likely to be28

interpreted as a stationary process with an inflated variance.29

This problem can be demonstrated using a simulated dataset. A “Gaussian iterated30

map” (or “mouse map”) is a nonlinear iterated function with two parameters α and β:31

x(i+1) = β + exp
(
−αx2

(i)

)
(4)

This function’s behavior is chaotic given certain parameters (Hilborn, 2001), making it
useful for generating replicable datasets whose “true” parameters can be compared to those
estimated. We defined two mouse maps:

x(i+1) = −0.6 + exp
(
−2πx2

(i)

)
;x(1) = 0

y(i+1) = −0.4 + exp
(
−e2y2

(i)

)
; y(1) = 1

These, in turn, were used to specify a series of parameters:

µ(i) = 4x(i)

σ(i) = exp
(
y(i)
)
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Figure 5 . Simulated data generated using a chaotic distribution of Gaussian parameters
derived from Equation 4. (Left) The full dataset D, consisting of 5050 simulated obser-
vations that were generated in blocks of 50. The default CPR algorithm will not identify
most of these change-points. (Right) A subset of D, with the true change-points denoted
by dashed gray lines. The CPR algorithm will reliably identify these change-points if it is
run only on this subset, despite failing to detect them when run on the complete dataset.

The dataset D consisted of 101 segments, where the ith segment was generated using a1

Gaussian distribution with parameters
(
µ(i), σ(i)

)
. A characteristic example is presented2

in Figure 5, which presents both the full data (Left) and a detail view of a section of the3

data (Right). When the true change-points are clearly labeled, their subdivisions appear4

highly plausible, but the CPR algorithm is not omniscient, and these relatively subtle5

discontinuities are subsumed by the overall variance of the data when too many of them6

occur within a particular segment.7

The Dicing Operation8

A strictly exploratory solution to this problem is to introduce the preliminary step9

of ‘dicing’ the data into arbitrary segments and examining each segment for change-points,10

outlined in Algorithm 1.11

When invoking the dicing operation, the analyst must specify some integer value d > 112

that specifies how many times to subdivide the data, doing so into equal parts. Each segment13

is checked for a single change-point, and any change-points that are identified are added to14

the initial model M. After performing the dicing operation, the CPR Algorithm proceeds15

with the new model M, rather than its default value of 〈0, n〉. This effectively bypasses16

the first few partitioning operations (during which the sensitivity might be impaired) and17

applies the CPR algorithm to an already-subdivided dataset.18

Figure 6 (top) demonstrates the efficacy of introducing the dicing operation to the19

data in Figure 5. Given one subdivision (the default for the CPR algorithm), no change-20

points are identified between t = 150 and t = 5000. However, with only three subdivisions,21

the number of change-points identified rises to 24. Given four or more subdivisions, the22

change-points identified were highly consistent, with difficulty only the range from 4400 to23

5000. Figure 6 (center) shows the total number of times different points were identified over24

the thirty different dicing operations. Only 284 of the 5049 possible points were identified25

at least once. Of those, 27 points were specified at least twenty-five times, and 62 were26

specified at least twenty times, without even considering ‘near misses.’27
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Algorithm 1: The dicing operation, which identifies the single best change-point in
each arbitrary segment of data.

Data: events x(1:n), times t(0:n), model C0, decision criterion τ , diced segment count
d

Result: diced model M
begin

S← 0, nd ,
2n
d , · · · ,

dn
d /* get segment fenceposts */

M← 〈0, n〉 ; pc = 1
n−1 /* empty “new CPs” array and prior odds of a

change */
for s = 1 to length (S)− 1 do

i← S (s) + 1; j ← S (s+ 1); |K| ← j − i+ 1 /* assign indices; allocate
BF array */
for c = i to j do

kc ←
m(x(i:c−1),C0)m(x(c:j),C0)

m(x(i:j),C0) ; K(c) ←
kc·(t(c)−t(c−1))

(t(j)−t(i−1))·exp(SB(c)) /* Bayes

factors */

if sum (K) · pc · 1
j−i+1 > τ then

ĉ← index(max(K)); Push(M, ĉ) /* insert ĉ into M if τ permits
*/

Sort(M); return M

Although the dicing operation has practical use when detecting stationary meta-1

stable periods within a more generally stable process, it should not be necessary in the vast2

majority of cases. Data should not be diced into segments so small that no more than one3

or two change-points can reasonably be expected to exist.4

Forward-Retrospective Change-Point Detection5

Another approach to the problem of oscillating data is to identify each change-point in6

chronological order. Rather than approaching the analysis as a batch process, change-point7

evaluations can take place within a more constrained frame.8

Sequential change-point detection algorithms have a long history, with the work of9

Page (1954) being among the earliest (see also Venkatraman, 1992; Chen & Gopalakrishnan,10

1998; Gallistel et al., 2004). Beginning with the indices i = 1 and j = 2, the data range11

x(i:j) is tested for a change-point repeatedly as j is incrementally increased. Once a change12

is detected at ĉ (where i < ĉ < j), the data prior to ĉ are removed from consideration and13

i = ĉ. This process continues until all observations have been considered.14

Thus, when a change is detected, the range of data subsequently considered is trun-15

cated. Although a deliberate feature in the interests of reducing the algorithm’s compu-16

tational load, this creates problems when ‘false alarms’ are observed. Over a very long17

sequence of Gaussian observations, for example, a handful of sizable outliers are reasonable;18

when only a small segment of data is being observed, however, estimates of variance are19

likely to be conservative and a random outlier may be confused for a true change in the20

distribution. This problem is particularly salient in data that suffer from some degree of21
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Figure 6 . Change-points identified in simulated data. (Top) Trials for which change-
points were identified, as a function of the number of subdivisions examined by the dicing
operation. (Center) A histogram of how often, across 30 values for the dicing parameter, a
precise change-point was identified. (Bottom) Trials for which change-points were identified
using the retrospective sequential algorithm.

out-of-sample ‘contamination.’ Furthermore, even in cases where the data are well-behaved,1

sequential analyses are vulnerable to mistaken inference because of multiple comparisons.2

When a true change is identified, there is a risk that its position will be estimated prema-3

turely.4

In order to combat this, a substantial improvement to traditional sequential analyses5

is proposed by Gallistel et al. (Submitted). After the first change-point is identified, each6

additional change-point’s identification is immediately followed by a retrospective test of7

the preceding change-point. For example, once ĉ(3) is identified, the interval xĉ(1):ĉ(3) is8

reanalyzed. If ĉ(2) was the result of a false alarm, it will probably not be detected again,9

and it can be removed from the model. If, on the other hand, the evidence still supports a10

change between ĉ(1) and ĉ(3), this re-analysis can be used to update the position of ĉ(2).11

The forward-retrospective change-point analysis proposed by Gallistel et al. (Sub-12

mitted) is combined with the CPR algorithm in Algorithm 2. Here, rather than making13

use of recursive binary partitioning, the CPR algorithm is only invoked to find a single14

change-point at a time.15

Figure 6 (bottom) shows the change-point model reported by the retrospective se-16

quential algorithm when analyzing the simulated data from Figure 5. Whereas the CPR17

algorithm displays considerable insensitivity in the absence of the dicing operation, the18

forward-retrospective analysis identifies nearly all changes, doing so close to their true times19

of occurrence.20

Although an effective alternative in many circumstances, the forward-retrospective21

approach also has shortcomings. Both the standard CPR algorithm and its sequential22

counterpart have expected runtimes that scale as a function both of the number of data23
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Algorithm 2: The forward-retrospective change-point algorithm, which scans forward
through the data in order to identify each change-point in chronological order

Data: events x(1:n), parameters P
Result: change-point model M
begin

M← 〈0, n〉 ; s← 1 /* empty “new CPs” array, segment index */
for i = 2 to n do

N← CPRBayes
(
x(M(s)+1:i),P

)
/* check for single cp */

if length (N) > 2 then
Push

(
M,M(s) + N(2)

)
/* insert cp into M */

Sort(M) ; s = s+ 1 /* sort M, update s */
if s > 2 then

O← CPRBayes
(
x(M(s−2)+1:M(s)),P

)
/* check previous cp */

if length (O) > 2 then
M(s−1) = M(s−2) + O(2) /* refine previous cp */

else
Pull

(
M(s−1)

)
; s = s− 1 /* remove previous cp */

return M

segments s and of the number of observations n. When using a binary partitioning strategy,1

the CPR algorithm’s runtime is expected to fall between O (n · s) and O (n · log s) (depend-2

ing on the order in which the points are identified). However, the sequential alternative has3

a runtime between O
(
(n− s)2

)
and O

(
n2

s

)
, depending on how evenly the change-points4

are spaced. When changes are infrequent, the forward-retrospective algorithm is potentially5

much slower.6

Table 1 gives a sense of these contrasting relationships. When change-points occur7

relatively frequently (as in the 3D motion tracking or the T-Bill rate datasets), the sequential8

approach only performs somewhat less well. However, when there are very few changes9

relative to the number of observations (as is particularly the case for the reaction times data),10

the increase in runtime can be dramatic. The quadratic runtime renders the sequential11

approach unusable for large datasets with large gaps between change-points.12

One way to mitigate the quadratic runtime is to increment the index i by more than13

one observation at a time (Chen & Gopalakrishnan, 1998). If change-points are consis-14

tently widely spaced, then the value of i could conceivably increase by tens or hundreds15

of observations with each step. In practice, however, consistently wide spacing renders the16

sequential approach unnecessary, while inconsistent spacing (in which some change-points17

are spaced much closer together than others) introduces the risk that large increments of i18

will overlook some changes.19

Another difficulty with the forward-retrospective strategy is its vulnerability to the20

stopping problem. In principle, this is mitigated to some extent by the retrospective oper-21
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Dataset Binary Partitioned Forward-Retrospective
SimChain 2.84 s 24.80 s

Reaction Time 21.23 s 3756.04 s
3D Motion Tracking 317.77 s 527.57 s

Mining Disasters (Exponential) 0.35 s 4.79 s
Mining Disasters (Poisson) 0.14 s 1.62 s

Well-Log Measurements 15.08 s 169.43 s
T-Bill Rates 4.45 s 15.70 s

diff(T-Bill Rates) 1.78 s 9.25 s
Simulation Data (diced) 23.15 s 71.72 s

Table 1
Processing time for the CPR algorithm in each of the datasets described in the main text
and supplement, performed using a dual-core 2.93GHz laptop.

ation, but the forward-retrospective strategy will, all things being equal, identify a larger1

number of change-points than the CPR strategy, because it is more likely to be impacted2

by small subsets of the data. As a counterweight against this, the forward-retrospective3

algorithm uses a default criterion of τ = 20, twice the default recommended for the CPR4

algorithm.5

Finally, the forward-retrospective algorithm yields different results examining the data6

forward and backward in time. This lack of symmetry arises from several factors, but the7

most substantive is the process of updating pc as additional change-points are detected.8

This results in a growing propensity to identify change-points over time.9

On the basis of these limitations, there are two scenarios in which the sequential10

approach should consistently be favored. The first is when changes are expected to occur11

relatively frequently, particularly if they occur in the oscillating manner characterized by the12

simulated data in Figure 5. The second is when temporal order is of primary importance,13

such as when the earliest change can be said to have occurred (e.g. the first trial in which14

an animal engaged in conditioned responding to a stimulus).15

Closed Form Solutions for Conjugate Priors16

This section provides closed-form solutions for the conjugate priors and marginal17

model likelihoods of various distributions that are likely to be of interest. These are used18

to compute the values of m (x,M) that appear in the change-point algorithm. This list is19

not meant to be exhaustive. Unless otherwise noted, the conjugacy of these distributions is20

demonstrated by DeGroot (2005).21

As detailed in the body text, the prior probability distribution (and the corresponding22

hyperparameters that describe its shape) can have a determining effect in Bayesian analysis,23

and must be selected in a principled manner. Whenever possible, the hyperparameters24

should reflect an analyst’s principled assumptions, and they should be explicitly reported25

along with a justification for their use. For example, if data were collected using equipment26

with a known degree of imprecision, this should be reflected by the prior. For each of the27

distributions below, the interpretation of the hyperparameters is provided to facilitate this28

process.29
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In some cases, an analyst’s intuitions must arise from the data themselves. In such ex-1

ploratory analyses, setting an inappropriate prior will not only result in misleading marginal2

likelihoods, but can also severely impair the sensitivity of the CPR algorithm. To the extent3

possible, the “rule-of-thumb” priors provided for each distribution are intended to facilitate4

the identification of change-points in keeping with an empirical Bayes approach (Casella,5

1985; Carlin & Louis, 2000). Insofar as their use deviates from standard Bayesian inference,6

an analyst choosing to use them should explicitly note cases where the prior hyperparame-7

ters are derived from the data.8

By preference, the rule-of-thumb priors make use of robust estimation techniques9

(Huber & Ronchetti, 2009). Time series with substantial discontinuities will, almost by10

definition, appear to contain ‘outliers’ when viewed without regard for time, so robust11

estimators (such as the median and median absolute deviation) are less likely to suggest12

parameters that are not characteristic of the preponderance of the data.13

Notation Formula Interpretation
Γ (x) (x− 1)! Gamma Function

Beta (x, y) Γ(x)Γ(y)
Γ(x+y) Beta Function

SumSq (x, y) (x− y) (x− y)> Sum of squared differences
MAD (x) median (|x−median (x)|) Median absolute deviation

14

Discrete Data (Univariate)15

The Binomial Distribution.16

• Support:17

{x1, . . . , xn|xi = 0 or 1}

• Sufficient statistics:18

n observations Sx =
n∑
i=1

xi

• With unknown probability of success p:19

Prior Hyperparameters20

{a|a > 0} Number of successes−1
{b|b > 0} Number of failures−121

Conjugate Prior22

Pr (p|a, b) = pa−1 (1− p)b−1

Beta (a, b)
Normalizing Constant23

m (a, b) = Beta (a, b) (5)

Posterior Hyperparameters24

a′ = a+ Sx b′ = b+ n− Sx

Posterior Predictive25

p̂ = a′

a′ + b′
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‘Rule-of-Thumb’ Empirical Prior1

a = 0.5 b = 0.5

The Geometric Distribution.2

• Support:3

{x1, . . . , xn|xi ∈ (0, 1, 2, 3, · · · )}

• Sufficient statistics:4

n observations Sx =
n∑
i=1

xi

• With unknown probability of success p:5

Prior Hyperparameters6

{a|a > 0} Number of observations
{b|b > 0} Sum of observations7

Conjugate Prior8

Pr (p|a, b) = pa−1 (1− p)b−1

Beta (a, b)
Normalizing Constant9

m (a, b) = Beta (a, b) (6)

Posterior Hyperparameters10

a′ = a+ n b′ = b+ Sx

Posterior Predictive11

p̂ = a′ + n

a′ + b′ + n+ Sx

‘Rule-of-Thumb’ Empirical Prior12

a = 0.5 b = 0.5

The Poisson Distribution.13

• Support:14

{x1, . . . , xn|xi ∈ (0, 1, 2, 3, · · · )}

• Sufficient statistics:15

n observations Sx =
n∑
i=1

xi

• With unknown rate λ:16

Prior Hyperparameters17

{a|a > 0} Total occurrences
{b|b > 0} Number of intervals18
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Conjugate Prior1

Pr (λ|a, b) = ba

Γ (a)
λa−1

exp (bλ)
Normalizing Constant2

m (a, b) = Γ (a)
ba

(7)

Posterior Hyperparameters3

a′ = a+ Sx b′ = b+ n

Posterior Predictive4

λ̂ = a′

b′

‘Rule-of-Thumb’ Empirical Prior5

a = median(x) b = 1

Continuous Data (Univariate)6

The Exponential Distribution.7

• Support:8 {
x1, . . . , xn|xi ∈ R>0

}
• Sufficient statistics:9

n observations Sx =
n∑
i=1

xi

• With unknown θ:10

Prior Hyperparameters11

{a|a > 0} Number of observations
{b|b > 0} Sum of observations12

Conjugate Prior13

Pr (θ|a, b) = ba

Γ (a)
θa−1

exp (bθ)
Normalizing Constant14

m (a, b) = Γ (a)
ba

(8)

Posterior Hyperparameters15

a′ = a+ n b′ = b+ Sx

Posterior Predictive16

θ̂ = b′

a′

‘Rule-of-Thumb’ Empirical Prior17

a = 1 b = median(x)
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The Gaussian Distribution.1

The conjugate analysis in this section, originally outlined by DeGroot (2005), is based on2

the excellent treatment of the subject by Murphy (2007).3

• Support:4

{x1, . . . , xn|xi ∈ R}

• Sufficient statistics:5

n observations Sx =
n∑
i=1

xi x̄ = Sx
n

• With unknown mean µ and known precision λ:6

Prior Hyperparameters7

{a|a ∈ R} Prior mean
{b|b > 0} Prior total precision8

Conjugate Prior9

Pr (µ|a, b) =

√
b

2π exp
(
− b2 (µ− a)2

)
Normalizing Constant10

m (a, b) =
√

2π
b

exp
(
a2b

2

)
(9)

Posterior Hyperparameters11

a′ = ab+ λSx
b+ λn

b′ = b+ λn

Posterior Predictive12

µ̂ = a′

‘Rule-of-Thumb’ Empirical Prior13

a = median(x) b = 0.1

• With known mean µ and unknown precision λ:14

Prior Hyperparameters15

{a|a > 0} (Number of observations)/2
{b|b > 0} (Sum of squared deviations from µ)/216

Conjugate Prior17

Pr (λ|a, b) = ba

Γ (a)λ
a−1 exp (−bλ)

Normalizing Constant18

m (a, b) = Γ (a)
ba

(10)
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Posterior Hyperparameters1

a′ = a+ n

2 b′ = b+ SumSq (x, µ)
2

Posterior Predictive2

λ̂ =

√
b′

a′

‘Rule-of-Thumb’ Empirical Prior3

a = 0.1 b = MAD (x) · 1.4826

• With unknown mean µ and unknown precision λ:4

Prior Hyperparameters5

{a|a ∈ R} Prior mean
{b|b > 0} Observations supporting the prior mean
{c|c > 0} (Observations supporting the prior precision)/2
{d|d > 0} (Sum of squared deviations)/2

6

Conjugate Prior7

Pr (µ, λ|a, b, c, d) = dcλc−1

Γ (c) exp (λd) ·

√
λb

2π · exp
(
−λb2 (µ− a)2

)
Normalizing Constant8

m (a, b, c, d) = Γ (c)
dc

√
2π
b

(11)

Posterior Hyperparameters9

a′ = ab+ Sx
b+ n

b′ = b+ n c′ = c+ n

2
10

d′ = d+ SumSq (x, x̄)
2 + bn (x̄− a)2

2 (b+ n)

Posterior Predictive11

µ̂ = a′λ̂ =

√
d′ · (b′ + 1)
b′ · c′

‘Rule-of-Thumb’ Empirical Prior12

a = median(x) b = 0.1
13

c = 0.1 d = MAD (x) · 1.4826
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Basic Linear Regression.1

Linear regression presents an analyst with a hybrid problem, because the dependent obser-2

vations y are being summarized in terms of a multivariate vector of regression coefficients3

β and a univariate variance parameter σ2. As with the Gaussian distribution, these pa-4

rameters can each be understood in terms of their respective priors distributions. The5

implementation below uses the multivariate Gaussian distribution as the conjugate prior6

for the coefficients β, and the inverse gamma distribution as the conjugate prior for the7

variance.8

This implementation is also distinctive in that the most arithmetically tractable form9

for the normalizing constant incorporates both the prior and posterior hyperparameters.10

• Support:11

{y1, . . . , yn|yi ∈ R}X =

X1,1 . . . X1,k
... . . . ...

Xn,1 . . . Xn,k

 , Xj,i ∈ R

• With unknown regression coefficients β and unknown variance σ2:12

Prior Hyperparameters13

model = m (m, a, b,Λ) Gaussian error model
m = {m1, . . . ,mk|mi ∈ R} Prior regression coefficients
Λ = Σ−1 Prior coefficient precision matrix
{a|a > 0} (Observations supporting the error)/2
{b|b > 1} (Sum of squared deviations)/2

14

Conjugate Prior15

Pr
(
β, σ2|y,X,model

)
= Pr

(
β, σ2|model

)
· Pr

(
y|X,β, σ2,model

)
Pr (y|model)

16

Given the model, Pr
(
β, σ2|y,X

)
∝ Pr

(
β|σ2, y,X

)
· Pr

(
σ2|y,X

)
17

Pr
(
β|σ2, y,X

)
= N

(
m, σ2Λ−1

)
Pr
(
σ2|y,X

)
= InvGamma (a, b)

Normalizing Constant18

Pr (y|model) = 1
(2π)n/2

·
√
|Λ|
|Λ′|
· b

a

b′a′
· Γ (a′)

Γ (a) (12)

Posterior Hyperparameters19

m′ =
(
X>X + Λ

)−1
·
(
Λm +X>y

)
a′ = a+ n

2
20

Λ′ = X>X + Λ b′ = b+ 1
2
(
y>y + m>Λm−m′>Λ′m′

)
Posterior Predictive21

β̂ = m′ ŷ = X>β̂
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1

σ̂2 = SumSq (y, ŷ)
n

‘Rule-of-Thumb’ Empirical Prior2

a = regress(x) b = 1
3

c = 1 d = X> ·X
n2

The Uniform Distribution.4

Applying the CPR algorithm to the continuous uniform distribution is a difficult because of5

how it responds to virtual observations. The sufficient statistics for a uniform distribution6

are the number of observations n, the minimum xmn, and the maximum xmx. Given n7

observations from a uniform distribution, each additional observation xn+1 always increases8

n, but otherwise it only impacts the shape of the distribution when it falls outside the range9

of [xmn, xmx] and changes the position of one of the endpoints. Thus, a “virtual” observation10

provided by a prior has very little effect on the distribution when xmn < xn+1 < xmx but11

has a very powerful effect otherwise. This confounds the principle that one should use a12

‘weak’ prior, because setting prior minimum and maximum values for the data either has a13

negligible effect, or a massive one, with no intermediary scenario.14

When both the minimum λα and maximum λω are unknown, setting a prior for the15

corresponding hyperparameters b1 and b2 has a determining effect on the viable range of16

values. This is reasonable in special cases where the system being modeled is very well17

defined, but in almost all empirical scenarios, the role played by the prior is to make an18

inference about the support of the distribution, which corresponds to a uniform step whose19

width is (λω − λα) and whose position is arbitrary. As such, an alternate parameterization20

of the conjugate prior only requires that the analyst specify prior observations a and the21

minimum allowable range d, which describes minimum variance (i.e. the maximum pre-22

cision) of the measurement. For example, if observations are rounded to the nearest tens23

place, then d = 10 is an appropriate value.24

In the more straightforward case that the minimum is known a priori to be 0.0, the25

prior maximum b and the allowable range d are identical. The likelihoods in any case26

when either the minimum or maximum is known can be reduced to this simple case by27

repositioning the origin to the known parameter and (in the case of a known maximum)28

reversing the resulting signs.29

• Support:30

{x1, . . . , xn|xi ∈ R}
• Sufficient statistics:31

n observations xmn = min (x) xmx = max (x)

• With known minimum 0.0 and unknown maximum λω:32

Prior Hyperparameters33

{a|a > 0} Number of observations
{b|b > 0} Minimum width of the interval34
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Conjugate Prior1

Pr (λω|a, b) = aba

(λω)a+1

Normalizing Constant2

m (a, b) = 1
aba

(13)

Posterior Hyperparameters3

a′ = a+ n b′ = max (b, xmx)

Posterior Predictive4

λ̂ω = max (b, xmx)
‘Rule-of-Thumb’ Empirical Prior5

a = 1 b = minimum nonzero value of diff (sort (x))

• With unknown minimum λα and unknown maximum λω:6

Prior Hyperparameters7

{a|a > 0} Number of observations
{b1, b2|b1, b2 ∈ R} Minimum and maximum values

OR

{a|a > 0} Number of observations
{d|d > 0} Minimum non-zero value for λω − λα

8

Conjugate Prior9

Pr (λα, λω|a, b1, b2) = a (a+ 1) (b2 − b1)a

(λω − λα)a+2 = a (a+ 1) (d)a

(λω − λα)a+2

Normalizing Constant10

m (a, b1, b2) = 1
a (a+ 1) (b2 − b1)a = 1

a (a+ 1) (d)a (14)

Posterior Hyperparameters11

a′ = a+ n b′1 = min (b1, xmn) b′2 = max (b2, xmx)
12

d′ = max (d, xmx − xmn)
Posterior Predictive13

λ̂α = b′1 λ̂ω = b′2
14

λ̂α = min
((

xmn + xmx − d′

2

)
, xmn

)
λ̂ω = max

((
xmn + xmx + d′

2

)
, xmx

)
‘Rule-of-Thumb’ Empirical Prior15

a = 1 d = minimum nonzero value of diff (sort (x))
16

b1 = N/A b2 = N/A
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Discrete Data (Multivariate)1

The Multinomial Distribution.2

• Support:3

x =

x1,1 . . . x1,k
... . . . ...

xn,1 . . . xn,k

 , xj,i = 0 or 1

• With unknown vector w:4

Prior Hyperparameters5

a = {a1, . . . , ak|ai > 0} Occurences per category−16

Conjugate Prior7

Pr (w|a) = Γ (
∑
ai)∏

(Γ (ai))
∏

wai−1
i

Normalizing Constant8

m (a) =
∏

(Γ (ai))
Γ (
∑
ai)

(15)

Posterior Hyperparameters9

a′ =
{
a′1, . . . , a

′
k

}
given that a′i = ai +

n∑
j=1

xj,i

Posterior Predictive10

ŵi = a′i∑
a′

‘Rule-of-Thumb’ Empirical Prior11

ai = 1 for all i

Continuous Data (Multivariate)12

The Multivariate Normal Distribution.13

As in the univariate case above, the support for this section is based on the demonstrations14

provided by by DeGroot (2005) and Murphy (2007).15

Because covariance matrices are highly sensitive to outliers, robust covariance esti-16

mation is highly complex (Huber & Ronchetti, 2009). The rule-of-thumb prior provided in17

this section is based on the estimates for the mean and covariance provided by Campbell18

(1980), which was selected because its implementation is straightforward and closed-form.19

However, this method’s robustness against outliers depends on the dimensionality of the20

data, tolerating at most 1
k+1 outliers across the data’s k dimensions (Rousseeuw & van21

Zomeren, 1990). Consequently, this estimator should be used with caution when the data22

display very high dimensionality.23

• Support:24

x =

x1,1 . . . x1,k
... . . . ...

xn,1 . . . xn,k

 , xj,i ∈ R
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• Sufficient statistics:1

n observations x̄ =

 1
n

n∑
j=1

xj,1, · · · ,
1
n

n∑
j=1

xj,k


2

In = [n× n] identity matrix Jn = [n× n] matrix of ones

• With unknown vector µ and unknown covariance matrix Σ:3

Prior Hyperparameters4

m = {m1, . . . ,mk|mi ∈ R} Prior mean vector
{p|p > 0} Observations supporting the prior mean
{a|a > k − 1} Observations supporting the prior precision
Λ = Σ−1 Prior precision matrix

5

Conjugate Prior6

Pr (µ,Σ|m, p, a,Λ) =
pk/2 |Λ|a/2 exp

(
−1

2tr
(
ΛΣ−1

)
− p

2 (µ−m)>Σ−1 (µ−m)
)

(2π)k/2 |Σ|(a+k)/2+1 2ak/2πk(k−1)/4∏k
j=1 Γ

(
a+1−j

2

)
Normalizing Constant7

m (m, p, a,Λ) =
(2π
p

)k/2
·

2ak/2πk(k−1)/4∏k
j=1 Γ

(
a+1−j

2

)
|Λ|a/2

(16)

Posterior Hyperparameters8

m′ = p

p+ n
m + n

p+ n
x̄ p′ = p+ n a′ = a+ n

9

Λ′ = Λ + x>
(
In −

1
n
Jn

)
x + pn

p+ n
SumSq (x̄,m)

Posterior Predictive10

µ̂ = m′ Σ̂ = Λ′

a′ − k − 1
‘Rule-of-Thumb’ Empirical Prior11

a = robustmean(x) b = 1
12

c = 1 d = inv(robustcov(x))
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