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Abstract

New results from control theory allow construction of
necessary conditions statistical models of body mass
regulation in the context of interaction with a com-
plex dynamic environment. Focusing on the stress-
related induction of central obesity via failure of HPA
axis regulation, we explore implications for strategies
of prevention and treatment. It rapidly becomes ev-
ident that individual-centered biomedical reduction-
ism is an inadequate paradigm. Absent mitigation of
HPA axis or related dysfunctions arising from social
pathologies of power imbalance, economic insecurity,
and so on, it is unlikely that permanent changes in
visceral obesity can be maintained without constant
therapeutic effort, an expensive – and likely unsus-
tainable – public policy.
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1 Introduction

Body mass control instantiates a sophisticated feedback be-
tween interior and exterior, very much a cognitive process in
the sense of Atlan and Cohen (1998) and of Maturana and
Varela (1980). Debate on internal ‘set point’ vs. externally-
driven ‘settling points’ resonates across the literature (e.g.,
Muller et al., 2010; Speakman et al., 2011), and the matter
has been the subject of some mathematical modeling (e.g.,
Tam et al., 2009).

Taking a distinctly different perspective, Bjorntorp (2001)
viewed visceral obesity – the most dangerous form – in terms
of unresolved ‘flight-or-fight’ activation of the HPA axis. Our
own analyses in this direction can be found in Chapters 1 and
7 of Wallace and Wallace (2010).

Following Bjorntorp, when the input of noxious signals is
prolonged, the HPA axis reactivity changes from normal and
relatively transient attempts to maintain homeostasis or al-
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lostasis with temporary peaks of cortisol secretion first, to a
state of sensitization, which reacts with exaggerated cortisol
secretion after a given input. This occurs during the most
active phase of the HPA axis – the early morning in humans.

When repeated too often and with sufficient strength of the
input, the first sign of malfunction is a delayed down-winding,
so that cortisol secretion stays elevated for a prolonged pe-
riod of time. Subsequently, the normal diurnal pattern is
disrupted, and morning values tend to be lower. This sub-
sequently develops into a low, steady, rigid diurnal cortisol
secretion with little reactivity, a ‘burned out’ HPA axis. In
parallel, the controlling, central glucocorticoid receptors be-
come less efficient, and down-regulated.

Further challenges are followed by atrophy of the entire sys-
tem, often found after long-term, severe hypercortisolaemia
as in Cushing’s syndrome, melancholic depression, post trau-
matic stress disorder (PTSD), and the aftermath of war.
Much research shows that lowered sex steroid and growth
hormone secretions have the same consequence, because of
the insufficient counteraction against cortisol effects, and the
combination of these abnormalities powerfully directs a larger
than normal fraction of total body fat to visceral deposits.

In sum, increased activity of the HPA axis triggers inhibi-
tion of both the pituitary gonadal and growth hormone axes.
Stress then may synergistically cause accumulation of visceral
fat, via elevated cortisol secretion and decrease of sex steroid
and growth hormones. Bjorntorp (2001) concludes in par-
ticular that the deposit of central body fat, which is closely
correlated with general measures of obesity, can serve as a
reasonable approximation to the long-term endocrine abnor-
malities associated with stress and often-repeated or chronic
activation of the HPA axis. That is, stress literally writes
an image of itself onto the body as visceral fat accumulation,
first having written an image of itself onto the HPA axis. The
phenomenon can be interpreted as the transmission of a struc-
tured signal between communicating systems, in a large sense,
from the embedding psychosocial structure to an individual’s
HPA axis, as has been mathematically modeled in Chapter 7
of Wallace and Wallace (2010).

An enormous literature supports the relation between stress
and obesity (e.g., Dallman et al., 2003; Barrington et al., 2012;
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Kouvonen et al., 2005; Tomiyama et al., 2012; etc.).
Such inherently cognitive phenomena, in the sense of At-

lan and Cohen (1998) described below, are necessarily con-
strained, as Dretske (1994) has noted, by certain asymptotic
limit theorems of probability:

Communication theory can be interpreted as
telling one something important about the condi-
tions that are needed for the transmission of infor-
mation as ordinarily understood, about what it takes
for the transmission of semantic information. This
has tempted people... to exploit [information theory]
in semantic and cognitive studies...

...Unless there is a statistically reliable channel of
communication between [a source and a receiver]...
no signal can carry semantic information... [thus]
the channel over which the [semantic] signal arrives
[must satisfy] the appropriate statistical constraints
of information theory.

Intersection of that theory with the formalisms of feedback
system control may provide insight into HPA axis response
to unresolved ‘flight-or-fight’ signals causing punctuated or
progressive increase of body mass.

Something of this approach has become a touchstone in re-
cent debate on the future direction of the nutrition sciences.
Schubert et al. (2011) in particular call for placing disciplines
like cultural sociology, human geography, social anthropology,
political science, and health economics at the center of a new
nutrition paradigm. In their view, social science needs to be
central to the enterprise of the nutrition sciences as a neces-
sary filter between atomistic, biomedical ‘basic’ science and
useful policy and practice.

Here, we will provide a deep formal engagement of precisely
that enterprise.

In sum, then, we extend recent work relating control theory
to information theory, and apply the resulting necessary con-
ditions statistical constraints in the construction of a class of
conceptual models characterizing body mass dysfunctions in
terms of their interpenetration and synergism with complex,
dynamic, social and cultural environments.

We begin with a review of recent developments in control
theory.

2 The Data-Rate Theorem

The data-rate theorem, a generalization of the classic Bode in-
tegral theorem for linear control systems (e.g., Yu and Mehta,
2010; Kitano, 2007; Csete and Doyle, 2002), describes the sta-
bility of linear feedback control under data rate constraints
(e.g., Mitter, 2001; Tatikonda and Mitter, 2004; Sahai, 2004;
Sahai and Mitter, 2006; Minero et al., 2009; Nair et al., 2007;
You and Xie, 2013). Given a noise-free data link between a
discrete linear plant and its controller, unstable modes can
be stabilized only if the feedback data rate H is greater than
the rate of ‘topological information’ generated by the unsta-
ble system. For the simplest incarnation, if the linear matrix

equation of the plant is of the form xt+1 = Axt + ..., where xt
is the n-dimensional state vector at time t, then the necessary
condition for stabilizability is

H > log[|detAu|] , (1)

where det is the determinant and Au is the decoupled unstable
component of A, i.e., the part having eigenvalues ≥ 1.

The essential matter is that there is a critical positive data
rate below which there does not exist any quantization and
control scheme able to stabilize an unstable (linear) feedback
system.

This result, and its variations, are as fundamental as the
Shannon Coding and Source Coding Theorems, and the Rate
Distortion Theorem (Cover and Thomas, 2006; Ash, 1990;
Khinchin, 1957).

Standing the approach on its head, in a sense, we will en-
tertain and extend these considerations, using methods from
cognitive theory to explore ‘failure modes’ of body mass con-
trol under data-rate overload.

Failure of cognition, it should be recognized, need not be
‘graceful degradation under pressure’. Punctuated collapse
may often be the norm, for deep reasons related to the in-
evitability of phase transitions in information systems, a mat-
ter long-known and much studied from the viewpoint of com-
putational complexity (e.g., Cheeseman et al., 1991; Hogg et
al., 1996; Monasson et al., 1999) that can be extended to very
general forms of feedback control.

The essential analytic approach will be something much like
Pettini’s (2007) ‘topological hypothesis’ – a version of Lan-
dau’s spontaneous symmetry breaking insight (Landau and
Lifshitz, 2007) – which infers that such punctuated events in-
volve a change in the topology of an underlying configuration
space, and the observed singularities in the measures of in-
terest can be interpreted as a ‘shadow’ of major topological
change happening at a more basic level.

The preferred tool for the study of such topological changes
is Morse Theory (Pettini, 2007; Matsumoto, 2002), summa-
rized in the Mathematical Appendix, and we shall construct
a relevant Morse Function using the Shannon uncertainty of
information sources ‘dual’, in a certain sense, to cognitive
processes of interest. Other such Morse Functions could be
defined, for example, via the groupoid representation method
of Wallace (2012b).

We begin with recapitulation of an approach to cognition
using the asymptotic limit theorems of information theory
(Wallace 2000, 2005, 2007, 2012). This will later be expanded
using an extension of the Data Rate Theorem.

3 Cognition as an information
source

Atlan and Cohen (1998) argue that the essence of cognition
– biological or otherwise – involves comparison of a perceived
signal with an internal, learned or inherited picture of the
world, and then choice of one response from a much larger
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repertoire of possible responses. That is, cognitive pattern
recognition-and-response proceeds by an algorithmic combi-
nation of an incoming external sensory signal with an internal
ongoing activity – incorporating the internalized picture of the
world – and triggering an appropriate action based on a deci-
sion that the pattern of sensory activity requires a response.

Incoming sensory input is thus mixed in an unspecified but
systematic manner with internal ongoing activity to create a
path of combined signals x = (a0, a1, ..., an, ...). Each ak thus
represents some functional composition of the internal and
the external. An application of this perspective to a standard
neural network is given in Wallace (2005, p.34).

This path is fed into a highly nonlinear, but otherwise sim-
ilarly unspecified, decision function, h, generating an output
h(x) that is an element of one of two disjoint sets B0 and B1

of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.
Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k + 1 ≤ j ≤ m
takes place.

Interest focuses on paths x triggering pattern recognition-
and-response: given a fixed initial state a0, examine all possi-
ble subsequent paths x beginning with a0 and leading to the
event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m,
but h(a0, ..., am) ∈ B1.

For each positive integer n, take N(n) as the number of high
probability paths of length n that begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths
‘meaningful’, assuming that N(n) will be considerably less
than the number of all possible paths of length n leading from
a0 to the condition h(x) ∈ B1.

Identification of the ‘alphabet’ of the states aj , Bk may de-
pend on the proper system coarsegraining in the sense of sym-
bolic dynamics (e.g., Beck and Schlogl, 1993).

Combining algorithm, the form of the function h, and the
details of grammar and syntax, are all unspecified in this
model. The assumption permitting inference on necessary
conditions constrained by the asymptotic limit theorems of
information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]

n

both exists and is independent of the path x. Again, N(n) is
the number of high probability paths of length n.

Call such a pattern recognition-and-response cognitive pro-
cess ergodic. Not all cognitive processes are likely to be er-
godic, implying that H, if it indeed exists at all, is path de-
pendent, although extension to nearly ergodic processes, in a
certain sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the Shannon-McMillan Theorem (Cover and
Thomas, 2006; Khinchin, 1957), we take it possible to de-
fine an adiabatically, piecewise stationary, ergodic infor-
mation source X associated with stochastic variates Xj

having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
. (2)

This information source is defined as dual to the underlying
ergodic cognitive process (Wallace, 2005).

‘Adiabatic’ means that, when the information source is
properly parameterized, within continuous ‘pieces’, changes
in parameter values take place slowly enough so that the in-
formation source remains as close to stationary and ergodic as
needed to make the fundamental limit theorems work. ‘Sta-
tionary’ means that probabilities do not change in time, and
‘ergodic’ that cross-sectional means converge to long-time av-
erages. Between pieces it is necessary to invoke phase change
formalism, a ‘biological’ renormalization that generalizes Wil-
son’s (1971) approach to physical phase transition (Wallace,
2005).

Shannon uncertainties H(...) are cross-sectional law-of-
large-numbers sums of the form −

∑
k Pk log[Pk], where the

Pk constitute a probability distribution. See Cover and
Thomas (2006), Ash (1990), or Khinchin (1957) for the stan-
dard details.

More general biological applications of this perspective can
be found in Wallace (2012, 2013b) and Wallace and Wallace,
(2013).

4 Network topology, symmetries,
and dynamics

An equivalence class algebra can be constructed by choosing
different origin points a0, and defining the equivalence of two
states am, an by the existence of high probability meaning-
ful paths connecting them to the same origin point. Disjoint
partition by equivalence class, analogous to orbit equivalence
classes for a dynamical system, defines the vertices of a net-
work of cognitive dual languages that interact to actually con-
stitute the system of interest. Each vertex then represents a
different information source dual to a cognitive process. This
is not a representation of a network of interacting physical sys-
tems as such, in the sense of network systems biology (e.g.,
Arrell and Terzic, 2010). It is an abstract set of languages
dual to the set of cognitive processes of interest, that may
become linked into higher order structures.

Topology, in the 20th century, became an object of alge-
braic study, so-called algebraic topology, via the fundamental
underlying symmetries of geometric spaces. Rotations, mir-
ror transformations, simple (‘affine’) displacements, and the
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like, uniquely characterize topological spaces, and the net-
works inherent to cognitive phenomena having dual informa-
tion sources also have complex underlying symmetries: char-
acterization via equivalence classes defines a groupoid, an ex-
tension of the idea of a symmetry group, as summarized by
Brown (1987) and Weinstein (1996). Linkages across this set
of ‘languages’ occur via the groupoid generalization of Lan-
dau’s spontaneous symmetry breaking arguments that will be
used below (Landau and Lifshitz, 2007; Pettini, 2007). See
the Mathematical Appendix for a brief summary of basic ma-
terial on groupoids.

Given a set of cognitive modules that are linked to solve a
problem, the ‘no free lunch’ theorem (English, 1996; Wolpert
and Macready, 1995, 1997) illustrates how a ‘cognitive’ treat-
ment extends a network theory-based theory (e.g., Arrell and
Terzic, 2010). Wolpert and Macready show there exists no
generally superior computational function optimizer. That
is, there is no ‘free lunch’ in the sense that an optimizer pays
for superior performance on some functions with inferior per-
formance on others gains and losses balance precisely, and
all optimizers have identical average performance. In sum,
an optimizer has to pay for its superiority on one subset of
functions with inferiority on the complementary subset.

This result is well-known using another description. Shan-
non (1959) recognized a powerful duality between the prop-
erties of an information source with a distortion measure and
those of a channel. This duality is enhanced if we consider
channels in which there is a cost associated with the different
letters. Solving this problem corresponds to finding a source
that is right for the channel and the desired cost. Evaluat-
ing the rate distortion function for a source corresponds to
finding a channel that is just right for the source and allowed
distortion level.

Another approach is the through the ‘tuning theorem’
(Wallace, 2005, Sec. 2.2), which inverts the Shannon Coding
Theorem by noting that, formally, one can view the channel
as ‘transmitted’ by the signal. Then a dual channel capac-
ity can be defined in terms of the channel probability distri-
bution that maximizes information transmission assuming a
fixed message probability distribution.

From the no free lunch argument, Shannon’s insight, or the
‘tuning theorem’, it becomes clear that different challenges
facing any cognitive system – or interacting set of them –
must be met by different arrangements of cooperating low
level cognitive modules. It is possible to make a very ab-
stract picture of this phenomenon based on the network of
linkages between the information sources dual to the indi-
vidual ‘unconscious’ cognitive modules (UCM). That is, the
remapped network of lower level cognitive modules is reex-
pressed in terms of the information sources dual to the UCM.
Given two distinct problems classes, there must be two dif-
ferent wirings of the information sources dual to the available
UCM, with the network graph edges measured by the amount
of information crosstalk between sets of nodes representing
the dual information sources.

The mutual information measure of cross-talk is not inher-
ently fixed, but can continuously vary in magnitude. This

suggests a parameterized renormalization: the modular net-
work structure linked by mutual information interactions and
crosstalk has a topology depending on the degree of interac-
tion of interest.

Define an interaction parameter ω, a real positive number,
and look at geometric structures defined in terms of linkages
set to zero if mutual information is less than, and ‘renormal-
ized’ to unity if greater than, ω. Any given ω will define
a regime of giant components of network elements linked by
mutual information greater than or equal to it.

Now invert the argument: a given topology for the giant
component will, in turn, define some critical value, ωC , so
that network elements interacting by mutual information less
than that value will be unable to participate, i.e., will be
locked out and not be perceived. See Wallace (2005, 2012)
for details. Thus ω is a tunable, syntactically-dependent,
detection limit that depends critically on the instantaneous
topology of the giant component of linked cognitive modules
defining the larger regulatory structure. That topology is the
basic tunable syntactic filter across the underlying modular
structure, and variation in ω is only one aspect of a set of
more general topological properties that can be described in
terms of index theorems, where far more general analytic con-
straints can become closely linked to the topological structure
and dynamics of underlying networks, and, in fact, can stand
in place of them (Atyah and Singer, 1963; Hazewinkel, 2002).

The central point, however, is that, in the context of this
study, some topological conformations of cognitive physio-
logical submodules, under the added influence of externally-
imposed stress signals, will represent ‘normal’ metabolic pro-
cesses, and others metabolic syndrome or worse.

In that regard, we now examine how environmental signals
carry messages.

5 Environment as information
source

Multifactorial cognitive systems interact with, affect, and are
affected by, embedding environments that ‘remember’ inter-
action by various mechanisms. It is possible to reexpress en-
vironmental dynamics in terms of a grammar and syntax that
represent the output of an information source – another gen-
eralized language.

For example, the turn-of-the seasons in a temperate cli-
mate, for many ecosystems, looks remarkably the same year
after year: the ice melts, the migrating birds return, the trees
bud, the grass grows, plants and animals reproduce, high sum-
mer arrives, the foliage turns, the birds leave, frost, snow, the
rivers freeze, and so on. In a social setting, interacting actors
can be expected to behave within fairly well defined cultural
and historical constraints, depending on context: birthday
party behaviors are not the same as cocktail party behav-
iors in a particular social set, but both will be characteristic.
Gene expression during development is highly patterned by
embedding environmental context via ‘norms of reaction’.

Suppose it possible to coarse-grain the ecosystem at time
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t, in the sense of symbolic dynamics (e.g., Beck and Schlogl,
1993) according to some appropriate partition of the phase
space in which each division Aj represent a particular range
of numbers of each possible fundamental actor in the gen-
eralized ecosystem, along with associated larger system pa-
rameters. What is of particular interest is the set of lon-
gitudinal paths, system statements, in a sense, of the form
x(n) = A0, A1, ..., An defined in terms of some natural time
unit of the system. Thus n corresponds to an again appropri-
ate characteristic time unit T , so that t = T, 2T, ..., nT .

Again, the central interest is in serial correlations along
paths.

Let N(n) be the number of possible paths of length n that
are consistent with the underlying grammar and syntax of the
appropriately coarsegrained embedding ecosystem, in a large
sense. As above, the fundamental assumptions are that – for
this chosen coarse-graining – N(n), the number of possible
grammatical paths, is much smaller than the total number of
paths possible, and that, in the limit of (relatively) large n,
H = limn→∞ log[N(n)]/n both exists and is independent of
path.

These conditions represent a parallel with parametric
statistics systems for which the assumptions are not true will
require specialized approaches.

Nonetheless, not all possible ecosystem coarsegrainings are
likely to work, and different such divisions, even when appro-
priate, might well lead to different descriptive quasi-languages
for the ecosystem of interest. Thus, empirical identification of
relevant coarsegrainings for which this theory will work may
represent a difficult scientific problem.

Given an appropriately chosen coarsegraining, define joint
and conditional probabilities for different ecosystem paths,
having the form P (A0, A1, ..., An), P (An|A0, ..., An−1), such
that appropriate joint and conditional Shannon uncertainties
can be defined on them that satisfy equation (2).

Taking the definitions of Shannon uncertainties as above,
and arguing backwards from the latter two parts of equation
(2), it is indeed possible to recover the first, and divide the set
of all possible ecosystem temporal paths into two subsets, one
very small, containing the grammatically correct, and hence
highly probable paths, that we will call ‘meaningful’, and a
much larger set of vanishingly low probability.

For humans, of course, the most influential environments
are social and cultural, in the sense of Schubert et al. (2011).

6 Thermodynamics of regulation
and control

Continuing the formal theory, information sources are often
not independent, but are correlated, so that a joint informa-
tion source can be defined having the properties

H(X1, ..., Xn) ≤
n∑

j=1

H(Xj) , (3)

with equality only for isolated, independent information
streams.

This is the information chain rule (Cover and Thomas,
2006), and has implications for free energy consumption in
regulation and control. Feynman (2000) describes how in-
formation and free energy have an inherent duality, defining
information precisely as the free energy needed to erase a mes-
sage. The argument is quite direct, and it is easy to design
an idealized machine that turns the information within a mes-
sage directly into usable work – free energy. Information is
a form of free energy and the construction and transmission
of information within living things – the physical instantia-
tion of information – consumes considerable free energy, with
inevitable – and massive – losses via the second law of ther-
modynamics.

Suppose an intensity of available free energy is associated
with each defined joint and individual information source
H(X,Y ), H(X), H(Y ), e.g., rates MX,Y , MX ,MY .

Although information is a form of free energy, there is nec-
essarily a massive entropic loss in its actual expression, so
that the probability distribution of a source uncertainty H
might be written in Gibbs form as

P [H] =
exp[−H/κM ]∫

exp[−H/κM ]dH
, (4)

assuming κ is very small.
To first order, then,

Ĥ =

∫
HP [H]dH ≈ κM , (5)

and, using equation (3),

Ĥ(X,Y ) ≤ Ĥ(X) + Ĥ(Y )

MX,Y ≤MX +MY . (6)

Thus, as a consequence of the information chain rule, al-
lowing crosstalk consumes a lower rate of free energy than
isolating information sources. That is, in general, it takes
more free energy – higher total cost – to isolate a set of cogni-
tive phenomena and an embedding environment than it does
to allow them to engage in crosstalk (Wallace, 2012).

Hence, at the free energy expense of supporting two infor-
mation sources, X and Y together, it is possible to catalyze
a set of joint paths defined by their joint information source.
In consequence, given a cognitive module (or set of them)
having an associated information source H(...), an external
information source Y , the embedding environment, can cat-
alyze the joint paths associated with the joint information
source H(..., Y ) so that a particular chosen developmental or
behavioral pathway – in a large sense – has the lowest free
energy.

At the expense of larger global free information expendi-
ture, that is, maintaining two information sources with their
often considerable entropic losses instead of one, the system
can feed, in a sense, the generalized physiology of a Maxwell’s
Demon, doing work so that environmental signals can direct
system cognitive response, thus locally reducing uncertainty
at the expense of larger global entropy production.
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We next examine some details of how such regulation might
operate, focusing on the role of feedback information, in the
sense of the Data-Rate Theorem.

7 Phase transition

A fundamental homology between the information source un-
certainty dual to a cognitive process and the free energy den-
sity of a physical system arises, in part, from the formal simi-
larity between their definitions in the asymptotic limit. Infor-
mation source uncertainty can be defined as in the first part
of equation (2). This is quite analogous to the free energy
density of a physical system in terms of the thermodynamic
limit of infinite volume (e.g., Wilson, 1971; Wallace, 2005).

Recall again Feynman (2000), who provides a series of phys-
ical examples, based on Bennett’s (1988) work, where this
homology is, in fact, an identity, at least for very simple sys-
tems. Bennett argues, in terms of idealized irreducibly ele-
mentary computing machines, that the information contained
in a message can be viewed as the work saved by not needing
to recompute what has been transmitted.

We can model a cognitive system – here, body mass control
– interacting with an embedding environment using a simple
extension of the language-of-cognition approach above. Re-
call that cognitive processes can be formally associated with
information sources. Again, a formal equivalence class alge-
bra can be constructed for a complicated cognitive system by
choosing different origin points in a particular abstract ‘space’
and defining the equivalence of two states by the existence of
a high probability meaningful path connecting each of them
to some defined origin point within that space.

To reiterate, disjoint partition by equivalence class is analo-
gous to orbit equivalence relations for dynamical systems, and
defines the vertices of a network of cognitive dual languages
available to the system: each vertex represents a different in-
formation source dual to a cognitive process. The structure
creates a large groupoid, with each orbit corresponding to a
transitive groupoid whose disjoint union is the full groupoid,
and each subgroupoid associated with its own dual informa-
tion source. Larger groupoids will, in general, have ‘richer’
dual information sources than smaller.

We can now begin to examine the relation between system
cognition and the feedback of information from the embedding
environment, H, in the sense of equation (1).

With each subgroupoid Gi of the (large) cognitive groupoid
associated with body mass control we can associate a dual
information source XGi having source uncertainty HGi .

Recall that dynamic responses of a cognitive system can be
represented by high probability paths connecting ‘initial’ mul-
tivariate states to ‘final’ configurations, across a great variety
of beginning and end points. This creates a similar variety
of groupoid classifications and associated dual cognitive pro-
cesses in which the equivalence of two states is defined by
linkages to the same beginning and end states. Thus, it be-
comes possible to construct a ‘groupoid free energy’ driven
by the quality of information coming from the embedding

ecosystem, represented by the information rate H, taken as a
temperature analog.

In the particular context of this work, H will be an index
of unresolved flight-or-fight psychosocial stress.
H is, then, an embedding context for the underlying cog-

nitive processes of interest, here the shifting, tunable con-
trol of body mass and the geography of fat deposition. The
argument-by-abduction from physical theory is, then, that H
constitutes a kind of thermal bath for the processes of cog-
nition. Thus we can, in analogy with the standard approach
from physics (Pettini, 2007; Landau and Lifshitz, 2007) con-
struct a Morse Function by writing a pseudo-probability for
the dual cognitive information source HGi as

P [HGi ] =
exp[−HGi

/κH)]∑
j exp[−HGj

/κH]
, (7)

where κ is an appropriate dimensionless constant characteris-
tic of the particular system. The sum is over all possible sub-
groupiods of the largest available symmetry groupoid. Again,
compound sources, formed by the (tunable, shifting) union
of underlying transitive groupoids, being more complex, will
have higher free-energy-density equivalents than those of the
base transitive groupoids.

A simple Morse Function for invocation of Pettini’s topolog-
ical hypothesis or Landau’s spontaneous symmetry breaking
is then a ‘groupoid free energy’ F defined by

exp[−F/κH] ≡
∑
j

exp[−HGj
/κH] . (8)

We can, using F , apply an analog to Landau’s spontaneous
symmetry breaking arguments, and Pettini’s topological hy-
pothesis, to the groupoid associated with the set of dual in-
formation sources.

Recall that Landau’s and Pettini’s insights regarding phase
transitions in physical systems were that certain critical phe-
nomena take place in the context of a significant alteration in
symmetry, with one phase being differently symmetric than
the other (Landau and Lifshitz, 2007; Pettini, 2007). If a
symmetry is lost in the transition, the change is termed spon-
taneous symmetry breaking. The greatest possible set of sym-
metries in a physical system is that of the Hamiltonian de-
scribing its energy states. Usually states accessible at lower
temperatures will lack the symmetries available at higher tem-
peratures, so that the lower temperature phase is less sym-
metric: The randomization of higher temperatures ensures
that higher symmetry/energy states will then be accessible
to the system. The shift between symmetries is highly punc-
tuated in the temperature index. Here, however, the larger
index represents a different symmetry – constrained exter-
nal behaviors – resulting in a qualitatively different cognitive
groupoid leading to different patterns of body mass and fat
deposition.

The essential point is that change in the stress signal H, or
in the ability of that signal to influence response, as indexed
by κ, can lead to punctuated change in the complex cognitive
processes of body mass and fat deposition regulation within
the individual, at a variety of scales and levels of organization.
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This permits a Landau-analog phase transition analysis in
which incoming information from the embedding ecosystem
– unresolvable psychosocial stress – serves to alter the body
mass regulatory system’s cognitive settings. If κH is relatively
large, as perceived by the system – then there are very few
active cognitive responses possible: neither flight nor fight are
available.

Certain details of such information phase transitions can be
calculated using ‘biological’ renormalization methods (Wal-
lace, 2005, Section 4.2) analogous to those used in the de-
termination of physical phase transition universality classes
(Wilson, 1971).

These results represent a significant generalization of the
Data-Rate Theorem, as expressed in equation (1).

Consider body mass as an order parameter, a nonnegative
real number R. Thus R would be a measure of the atten-
tion given to the ‘control’ signal defining H. According to
the Landau argument, R declines sharply when H ≤ HC ,
for some critical value. That is, when H > HC , there is
a spontaneous symmetry change: above that value, a kind
of pathological ‘global broadcast’ takes place entraining nu-
merous unconscious cognitive submodules, and resulting in
dysfunctional fat accumulation and deposition.

8 Another approach

Here we use the rich vocabulary associated with the stabil-
ity of stochastic differential equations to model, from another
perspective, phase transitions in the composite system of indi-
vidual body and environment (e.g., Horsthemeke and Lefever,
2006; Van den Broeck et al., 1994, 1997).

Define a ‘symmetry entropy’ based on the Morse Function
F of equation (8) over a set of structural parameters Q =
[Q1, ..., Qn] (that may include H) as the Legendre transform

S = F (Q)−
∑
i

Qi∂F (Q)/∂Qi . (9)

The dynamics of such a system will be driven, at least in
first approximation, by Onsager-like nonequilibrium thermo-
dynamics relations having the standard form (de Groot and
Mazur, 1984):

dQi/dt =
∑
j

Ki,j∂S/∂Qj , (10)

where the Ki,j are appropriate empirical parameters and t is
the time. A biological system involving the transmission of
information may, or may not, have local time reversibility:
in English, for example, the string ‘ eht ’ has a much lower
probability than ‘ the ’. Without microreversibility, Ki,j 6=
Kj,i.

Since, however, biological systems are quintessentially
noisy, a more fitting approach is through a set of stochastic
differential equations having the form

dQi
t = Ki(t,Q)dt+

∑
j

σi,j(t,Q)dBj , (11)

where the Ki and σi,j are appropriate functions, and different
kinds of ‘noise’ dBj will have particular kinds of quadratic
variation affecting dynamics (Protter, 1990).

Several dynamics become immediately evident:
1. Setting the expectation of equations (11) equal to zero

and solving for stationary points ultimately must give attrac-
tor states since the noise terms preclude unstable equilibria.
This result, however, requires some further development.

2. This system may converge to limit cycle or pseudo-
random ‘strange attractor’ behaviors similar to thrashing in
which the system seems to chase its tail endlessly within a
limited venue – a kind of ‘Red Queen’ pathology.

3. What is converged to in both cases is not a simple state
or limit cycle of states. Rather it is an equivalence class,
or set of them, of highly dynamic cognitive modes coupled
by mutual interaction through crosstalk and other interac-
tions. Thus ‘stability’ in this structure represents particular
patterns of ongoing dynamics rather than some identifiable
static configuration or ‘answer’.

4. Applying Ito’s chain rule for stochastic differential equa-
tions to the (Qj

t )
2 and taking expectations allows calculation

of variances. These may depend very powerfully on a system’s
defining structural constants, leading to significant instabili-
ties depending on the magnitudes of the Qi, as in the Data
Rate Theorem (Khasminskii, 2012). That is, the stability of
states found by setting the expectation of equation (11) to
zero may be strongly parameterized.

5. Following the arguments of Champagnat et al. (2006),
this is very much a coevolutionary composite structure, where
fundamental dynamics are determined by the feedback be-
tween internal and internal and between internal and exter-
nal.

In particular, setting the expectation of equation (11) to
zero generates an index theorem (Hazewinkel, 2002) in the
sense of Atiah and Singer (1963) that relates analytic results,
the solutions of the equations, to underlying topological struc-
ture, the eigenmodes of a complicated geometric operator
whose groupoid spectrum represents symmetries of the possi-
ble changes that must take place for a tunable workspace of
cooperating cognitive modules to become assembled and acti-
vated. The outcome of such activation need not be beneficial
to the organism on any given timescale.

9 A simple example

Consider the body mass measure, R, above, here taken as R1

at ‘optimum’ level. Suppose, once triggered, the reverberation
of cognitive attention to an incoming unresolved stress signal
signal is self-dynamic but that the response rate is determined
by the magnitude of of the signal κH, and affected by noise,
so that, as a first approximation,

dRt = −κH|Rt −R1||Rt −R2|dt+ βRtdWt , (12)

where dWt represents white noise, and all constants are pos-
itive. At equilibrium, the expectation of equation (12) – the
mean body mass – is either the ‘normal’ value R1 or the
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canonical excitation level R2 > R1. Note that, for the pur-
poses of calculation, one may replace the absolute value by
the positive square root of the square, an expression more
friendly to some computer algebra programs.

But Wilson (1971) invokes fluctuation at all scales as the
essential characteristic of physical phase transition, with in-
variance under renormalization defining universality classes.
Criticality in biological or other cognitive systems is not likely
to be as easily classified, e.g., Wallace (2005, Section 4.2), but
certainly failure to have a second moment seems a good analog
to Wilson’s instability criterion. As discussed above, analo-
gous results relating phase transitions to noise in stochas-
tic differential equation models are widely described in the
physics literature.

To calculate the second moment in R, now invoke the Ito
chain rule, letting Yt = R2

t . Then

dYt = (−2κH|Rt −R1||Rt −R2|Rt + β2R2
t )dt+ 2βR2

tdWt ,
(13)

where β2R2
t in the dt term is the Ito correction due to noise.

Again taking the expectation at equilibrium, no second mo-
ment can exist unless the expectation of R2

t is greater than or
equal to zero, giving the condition

κH >
β2

2(R2 −R1)
. (14)

Suppose, now, that the new ‘set point’ R2 is itself deter-
mined by the magnitude of κH as

(R2 −R1) = ακH . (15)

Then the new condition becomes

κH >
β√
2α

. (16)

Thus, in consonance with the direct phase transition argu-
ments in H, there is a minimum stress signal level necessary
to support a self-dynamic shift to higher body mass, in this
model. For a given level of ‘noise’, the larger α, the smaller
the needed unresolved stress signal strength to trigger punc-
tuated body mass increase.

More complex algebraic relations between κH and R than
equation (15) are, of course, quite likely. Indeed, hints of such
a mechanism are in the literature. Figure 1, adapted from
Singh-Manoux et al. (2003), shows a nonlinear dose-response
relation between age adjusted prevalence of self-reported ill
health versus self-reported status rank for white collar work-
ers in the UK. 1 is high rank and 10 low rank, likely to involve
high levels of unresolved HPA axis activation. The low status
group approaches the ‘LD-50’ level at which half the popula-
tion shows response to dosage.

10 Therapeutic intervention

As Champagnat et al. (2006) describe, shifts between the
quasi-equilibria of a coevolutionary system like that of equa-
tion (11) can be addressed by the large deviations formalism.

Figure 1: Redisplay of data from Singh-Manoux et al. (2003).
Sex-specific dose-response curves of age-adjusted self-reported
ill-health vs. self-reported status rank, for the Whitehall II co-
hort, 1997 and 1999. 1 is high status, 10 low status, indexing
a higher level of unresolvable stress. The curve is approaching
the LD-50 at which half the population suffers the impact of
a poison.
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The dynamics of drift away from trajectories predicted by
the canonical equation can be investigated by considering the
asymptotic of the probability of ‘rare events’ for the sample
paths of the diffusion.

‘Rare events’ are the diffusion paths drifting far away from
the direct solutions of the canonical equation. The probability
of such rare events is governed by a large deviation principle,
driven by a ‘rate function’ I that can be expressed in terms
of the parameters of the diffusion.

This result can be used to study long-time behavior of the
diffusion process when there are multiple attractive singular-
ities, here, multiple set/settling points. Under proper con-
ditions, the most likely path followed by the diffusion when
exiting a basin of attraction is the one minimizing the rate
function I over all the appropriate trajectories.

An essential fact of large deviations theory is that the rate
function I almost always has the canonical form

I = −
∑
j

Pj log(Pj) (17)

for some probability distribution in the Pk (Dembo and
Zeitouni, 1998).

The argument relates to equation (11), now seen as sub-
ject to large deviations that can themselves be described as
the output of an information source LD having source uncer-
tainty I, driving Qj-parameters that can trigger punctuated
shifts between quasi-stable topological modes of the system
of interacting cognitive submodules determining body mass.

That is, we can now write a joint source uncertainty for
bodymass regulation in the context of therapeutic interven-
tion as

H(XGi
, LD) , (18)

and carry through the arguments leading to equations (7),
(8), and (11).

It should be clear that both other internal and feedback
signals, beyond H, and independent, externally-imposed per-
turbations, can cause such transitions in a highly punctuated
manner. Some of these may, in such a coevolutionary sys-
tem, be highly pathological over a developmental trajectory,
necessitating therapeutic counterinterventions – an imposed
I – over a subsequent trajectory.

Similar ideas are now common across much of systems bi-
ology (e.g., Kitano 2004).

11 Discussion and conclusions

Two factors determine possible dynamics, in the simplest ver-
sion of the model: the magnitude of of the environmental
feedback signal – the unresolved HPA axis stress κH, and
the inherent structure of the groupoid defining the cognitive
free energy analog of the body mass regulatory system, F .
Higher levels of stress will impose markedly different possible
behaviors and phenotypes, triggering body mass pathologies.
This has profound implications for understanding disorders of
body mass as gestalt processes, involving not just an atom-
ized individual, but the individual-in-context. Such context,

for humans, inevitably includes both cultural and social ex-
pectations, interactions, and constraints, as in figure 1, and
as emphasized by Schubert et al. (2011).

Equations (11-18) expand the argument to model in more
detail the effects of pathological developmental perturbations
and therapeutic interventions designed to counter them, find-
ing that body mass can be driven by unresolved sociocul-
tural stressors, according to various possible dose-response
relations.

Nunney (1999) examines cancer occurrence in terms of in-
creasingly elaborate tissue-specific control mechanisms that
must have evolved along with increase in the size of organ-
isms. Wallace (2005b) takes Nunney’s viewpoint regarding
mechanisms that must have evolved to stabilize animal con-
sciousness, and proposes a ‘cancer model’ for mental disorders
in which failure of stabilization lies at the heart of the dysfunc-
tion phenotypes. Following Bjorntorp (2001), we argue here
that collapse of ‘flight-or-fight’ mechanisms under imposed
psychosocial stress can lie at the heart of regulatory failure
in body mass dysfunction, and model the outcome using new
formal developments relating control theory to information
theory.

We have, in some measure, extended the criticisms that
Bennett and Hacker (2003) made of contemporary neuro-
science. They explored the ‘mereological fallacy’ of a decon-
textualization that attributes to ‘the brain’ what is really the
province of the whole individual. Here, we argue that, in
terms of body mass regulation and the geography of fat de-
position, for humans, the ‘whole individual’ involves essential
interactions with embedding social and cultural milieu, power
relations between groups and individuals, and the lasting in-
fluence of path-dependent historical trajectory determining
those relations. Understanding, prevention, and treatment
of body mass disorders cannot be disentangled from the role
of feedback from the embedding sociocultural and other en-
vironments that necessarily incorporate power relations, as
Schubert et al. (2011) argue.

For the study of body mass dysfunctions, individual-
centered biomedical reductionism is an inadequate paradigm.
Indeed, absent mitigation of unresolved socially-induced HPA
axis or related stresses arising from pathologies of power, so-
cioeconomic deprivation, and so on, it seems unlikely that per-
manent changes in visceral obesity can be maintained without
constant therapeutic effort – a persistent perturbing informa-
tion source LD. This would constitute an exceedingly expen-
sive public policy, unlikely to be sustainable in the long term.

12 Mathematical appendix

12.1 Morse Theory

Morse Theory explores relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example information source uncertainty on a
parameter space and possible iterations involving parameter
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manifolds determining critical behavior. An example might
be the sudden onset of a giant component. These can be re-
formulated from a Morse Theory perspective (Pettini, 2007).

The basic idea of Morse Theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points inM with f(x) = a. IfM is compact, then
the whole manifold can be decomposed into such slices in a
canonical fashion between two limits, defined by the minimum
and maximum of f on M . Let the part of M below a be
defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then, f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues,
so that there are no lines or surfaces of critical points and,
ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse Theory are:

1. If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real functions
of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once

all the critical points of f are known: let the Morse numbers
µi(i = 0, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =

m∑
i=1

(−1)iµi.

The Euler characteristic reduces, in the case of a simple poly-
hedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

7. Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct
product of an i-disk and an (m− i)-disk.

Pettini (2007) and Matsumoto (2002) contain details and
further references.

12.2 Groupoids

A groupoid, G, is defined by a base set A upon which some
mapping – a morphism – can be defined. Note that not
all possible pairs of states (aj , ak) in the base set A can be
connected by such a morphism. Those that can define the
groupoid element, a morphism g = (aj , ak) having the natu-
ral inverse g−1 = (ak, aj). Given such a pairing, it is possi-
ble to define ‘natural’ end-point maps α(g) = aj , β(g) = ak
from the set of morphisms G into A, and a formally as-
sociative product in the groupoid g1g2 provided α(g1g2) =
α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then, the prod-
uct is defined, and associative, (g1g2)g3 = g1(g2g3). In addi-
tion, there are natural left and right identity elements λg, ρg
such that λgg = g = gρg.

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. A groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
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function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. For example, a
groupoid G is a topological groupoid over a base space X if
G and X are topological spaces and α, β and multiplication
are continuous maps.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

The morphism (α, β) suggests another way of looking at
groupoids. A groupoid over A identifies not only which ele-
ments of A are equivalent to one another (isomorphic), but it
also parameterizes the different ways (isomorphisms) in which
two elements can be equivalent, i.e., in our context, all possible
information sources dual to some cognitive process. Given the
information theoretic characterization of cognition presented
above, this produces a full modular cognitive network in a
highly natural manner.
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