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1 General description of model

Here and in the main paper, we report a mixture of analytical results and numerical
simulations. All numerical simulations were carried out in R 2.10.1 (R Foundation
for Statistical Computing, 2009). Code is available from the corresponding author
on request.

We calculate mt, the value of parameter M for year t, using the recurrence
relation:

mt = rmt−1 +
√

(1− r2)X (1)

- where X is a value drawn from a normally distributed random variable with mean
M̄ and standard deviation σ. In what follows, M̄ is taken to be 0 and σ as 1 unless
otherwise specified, since absolute values of M are unimportant for the results we
present. For 0 ≤ r < 1, (1) produces sequences such that the correlation between
mk+1 and mk is r for all k, the long-term mean is M̄ , and the standard deviation
over very long runs of years is equal to σ, although over runs of a few years, the
standard deviation is inversely proportional to r. With r = 1, the environment
never changes and we consider this only as a limiting case.

As figure 1 of the main paper shows, as r approaches 1, there begin to be
long sequences of successive good and bad years. We calculated the mean run
length l̄ (defined as the mean number of successive years which deviated from M̄
in the same direction), for 10000 simulated years, and all values of r from 0 to
0.99 in increments of 0.01. The simulated data were well approximated (Pearson
correlation 0.98) by the function:

l̄ = 1 +
1

(1− 0.95r)
(2)
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Figure 1: Mean length of sequences of successive years deviating from
M̄ in the same direction, as a function of r. Points show results from
simulation of 10000 years whilst the line shows the approximating func-
tion given by equation (2).

Mean run length as a function of r is shown in figure 1. Every year, a cue qt
of the current state of the environment is available to the individual. qt varies
continuously, and is related to mt by:

qt = vmt +
√

(1− v2)X (3)

- where X is drawn randomly from a normal distribution with mean M̄ and stan-
dard deviation σ. We consider only the case of 0 ≤ v ≤ 1. This means that the
correlation between qt and mt is v.

What is referred to as the adult environment in the paper is the mean of m16

to m25. That is:

madult =
1

10
Σ25

k=16mk (4)

The early-life cues are simply q1 for one-year sampling, and the mean of q1 to q5
(notated as q̄1..5) for five-year sampling.
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2 Predictive value of cues in one year for the

state of the environment in a future year

In this section, we consider analytically the predictive value of cues received in
one year for the state of the environment k years later. First, let q and m be
standardized to their respective long-term means and standard deviations, so that
E(q) and E(m) are 0 and σq and σm are 1. In general, if two random variables
have correlation coefficient τ , then:

E(Y |X) = E(Y ) + τσY
X − E(X)

σX
(5)

Where the expected values are 0 and the σ equal to 1, this reduces to:

E(Y |X) = τX (6)

In the current case, the correlation between mt and qt is v and that between mt+1

and mt is r, and so we have:
E(mt|qt) = vqt (7)

and
E(mt+1|mt) = rmt (8)

Now we can apply the law of iterated expectations with nested conditional sets
which states, in the general case, that:

E(X|A) = E(E(X|B)|A) (9)

Thus it follows that:

E(mt+2|mt) = E(E(mt+2|E(mt+1)|mt) = r2mt (10)

and more generally:
E(mt+k|mt) = rkmt (11)

As for the relationship between qt and mt+k, we again apply the law of iterated
expectations with nested conditional sets using (7) and (11), giving the general
result that:

E(mt+k|qt) = vrkqt (12)

By rearranging equation (6), the predictive value β is given in general by:

β =
E(Y |X)

X
(13)
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Applying this to equation (12), we can see that the predictive value of qt for mt+k

in the current case is:

β =
E(mt+k|qt)

qt
(14)

=
vrkqt
qt

(15)

= vrk (16)

The implication of equation (16) is that the predictive value of information received
in one year for the state of the environment in the future decays very fast if r � 1.
Figure 2 illustrates this by showing the predictive value of current cues for time
points in the future if v = 1 and r takes the four different values shown. Unless r
is around 0.95 or above, there is essentially no predictive value in early-life cues for
a time point the length of the human developmental period into the future, even
if the cues are perfectly reliable in terms of the contemporaneous environment.

3 Why does using early-life cues (usually) lead

to a worse prediction of adult environment

than ignoring them?

To investigate why using early life cues leads to a larger discrepancy between
prediction and subsequent experience than assuming M̄ for values of r less than
aproximately 0.95, we simulated 2000 lifetimes for r = 0, r = 0.5, and r = 1
and examined the frequency distribution of values of m in early-life experience
compared to the frequency distribution of madult. As figure 3 shows, when r < 1,
actual adult experience is clustered tightly around M̄ , since it reflects ten drawings
from a normal distribution with mean M̄ , whereas early-life experience, consisting
of fewer samples, has a larger variance. Thus, the adult environment is generally
less extreme on average than the shorter period of early life would lead one to
predict. This effect will become more marked as the ratio of the length of the
adult reproductive period to the length of the early-life sampling period increases.
Five-year sampling reduces but does not abolish the difference in variances. Only
where r = 1 is the variance of actual adult experience equal to the variance in
early-life experience.
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Figure 2: Predictive value of a cue received in the current year for the
state of the environment in a single year at different times in the future,
for four different values of the environmental autocorrelation parameter
r. The cue validity v is taken to be 1.

4 Optimal use of early-life information

It is possible to imagine developmental strategies which anticipate the regression to
the mean of adult experience compared to the briefer period of early-life experience,
for example by predicting that the adult environment will be somewhere between
q̄1..5 and M̄ . Do such strategies, which use early-life information and M̄ in some
weighted combination, lead to a greater region of adaptive utility for external PARs
compared to the simple strategy of assuming that adulthood will be the same as
early life which is considered in the main paper?

The strategy of assuming that the adult environment will be halfway between
early-life experience and M̄ does indeed lead to a slightly larger region of the
parameter space in which using early-life cues improves the fit between prediction
and actual adult experience. Figure 4 shows that the minimum value of r required
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Figure 3: Histogram of values of m in early-life experience (white) and
subsequent adult experience (black), for r = 0, r = 0.5 and r = 1.
The top row represents one-year sampling and the bottom row five-
year sampling. Data represent 2000 simulations at each parameter
combination.

for using early-life cues to be advantageous is reduced from 0.95 to around 0.90 by
taking halfway between early-life cues and M̄ as the predicted adult environment,
rather than taking early-life cues to represent the adult environment.

There are in fact an infinite number of possible strategies which assume the
adult environment will be given by some weighted average of M̄ and early-life
cues and many of these may perform somewhat better than the simple strategy
described in the main paper. However, this does not change the conclusion from
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Figure 4: Regions of parameter space (shaded dark) in which an in-
dividual ends up on average better matched to her adult environment
by using early-life cues to set adult phenotype, rather than following a
genetically fixed strategy where she develops matched to the mean of
conditions experienced by the lineage over evolutionary time. In the
top panels, she predicts that the adult environment will be the same
as that she experienced in early life (this reproduces figure 3 of the
main paper). In the bottom panels, she predicts that the adult envi-
ronment will be halfway between her early experience and the lineage’s
long-term mean experience M̄ . Data represent 2000 simulations at each
parameter combination.

the main paper that an external PAR is unlikely to be adaptive unless r is close
to 1 and v substantial. To see why, we here consider what the optimal weight to
give to early-life experience in setting expectations about what madult should be.
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Let us assume that the long-term mean of Q is M̄q, the long-term mean of M
is M̄ , and that M and Q have the same variance. It follows from equation (5)
that:

E(m16|q1) = M̄ + r(q1 − M̄q) (17)

- where r is the correlation coefficient between q1 and m16. The formula for r is
given in equation (16). Thus,

E(m16|q1) = M̄ + vr15(q1 − M̄q) (18)

The adult environment is in fact the mean of ten years of observations, so we can
generalise equation (18):

E(madult|q1) = M̄ +
v

10
Σ25

k=16r
k(q1 − M̄q) (19)

Unless r is close to 1, powers of r of 15 and above will be extremely close to zero
(see SI figure 2). Thus, where r � 1 (or v ≈ 0), equation (19) becomes, for all
values of q1:

E(madult|q1) ≈ M̄ (20)

If the expected value of the adult environment given any cue values received
in early life is approximately M̄ , then there is no possible advantage of a plastic
strategy which takes these cues into account over a fixed strategy which simply
assumes M̄ from the outset. Thus, we conclude that there is no strategy under
which an external PAR is adaptive if r � 1 (or v ≈ 0).

5 Model incorporating effects of internal state

on adult outcomes

We expanded the model described in section 1 to allow for a causal impact of
early-life experience on the value of M in adulthood. To do this, we defined madult

as:

madult =
1

10
Σ25

k=16mk + d
1

5
Σ5

k=1qk (21)

That is, the average value of Q over the five years of early life directly contributes
to the value of M the individual experiences in adulthood, with weight d, so that
as d becomes larger, this influence becomes increasingly strong. We are effectively
assuming that only the first five years of life have this impact, and that each of
them weighs equally in it. Note that for one-year sampling, it is still only q1
which the individual uses to form its prediction of adult M , whereas for five-year
sampling, it is the mean of q1 to q5. Results from this version of the model are
given in the main paper.
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